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ABSTRACT

In this report, the exact solution for the electromagnetic field
diffracted by a perfectly conducting plane angular sector is determined.
The problem is a three-dimensional vector problem and the solution is
presented in the form of a dyadic Green's function, which is the most
general form of solution possible. Thus the vector fields as well as

the current on the sector may be determined for any given source exci-
tation.

The corner angle of the plane angular sector is arbitrary, varying
between zero and m. Special cases of the plane angular sector are the
half plane and the quarter plane. To find the fields for larger angles,
such as at the corner cf an aperture, Babinet's principle can be used.

The dyadic Green's function is composed of vector wave functions,
which in turn are composed of scalar wave functions, The problem is
solved in a sphero~-conal coordinate system. In this system, the plane
angular sector is one of the coordinate surfaces, so that the separation
of variables technique is used to find the scalar wave functions. They
consist of spherical Bessel®’s functions and Lamé functions. The Lamé
functions are solutions of two coupled differential equations. These
equations are solved for the special case of a quarter plane scatterer.
The first 192 eigenvalues and eigenfunctions are computed and tabulated.

The fields and currents close to the tip of the quarter plane ate
presented. These fields and currents have been the subject of much
conjecture by several authors. It is shown that the dominant field
behaves as rV”), where the lowest value of the eigenvalue v is 0.296,

The far fields for infinitesimal dipole sources very close to the tip are
also determined and several patterns are presented.

As with any exact solution of a complex problem, the results are
not simple. It is felt, however, that the exact solution obtained here
lays the foundation for subsequent work. For instance, it should be
possible to use this work to determine an asymptotic approximation and
thus derive a "diffraction coefficient" for the tip. This would be very
useful in Keller's "Geometrical Theory of Diffraction." Without any
additional work, there are sufficient numerical results presented in this
report to determine the fields within approximately one wavelength of
the tip for any source, or the fields everywhere for a source within one
wavelength of the tip.
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CHAPTER I

INTRODUCTTON

The primary purpose of this work is to determine the exact solution
for the electromagnetic field scattered by a perfectly conducting plane
angular sector. A plane angular sector is the section of an infinite
plane bounded by two interesting straight edges which terminate at a
corner. This is a three-dimensional vector problem, so the final solu-
tion is in the form of a dyadic Green's function. The physical config-
uration is shown in Figure 1. The corner angle is arbitrary in the
range zero to lI. For larger corner angles, such as the corner of an
aperture, Babinet's principle can be used to obtain the fields dif-
fracted by the complementary structure.

Diffraction by objects with edges, corners, tips, etc., has occu-
pied the attention of several authors.* The classical case is the half-
plane, which was solved by Sommerfeld, and has since been studied by
many authors.™ The problem considered here is more general, the half-
plane being a speciasl case of the plane angular sector. The solution
near the corner, or tip, is of primary interest in the angular sector
problem. A half-plane edge is a discontinuity in the scattering sur-
face since the rormal to the surfae cannot be defined. A tangent can
be defined, however. The corner of a plane angular sector is a "double"

discontinuity siuce even the tangent cannot be defined there.

*For extensive bibliographies, see Reference 17, Ch. 12, and Reference 19,
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Several authors [1, 2, 3, 4, 5] have considered the field varia-
tion at this "double" discontinuity and have made conjectures based on
approximations and physical reasoning. Two of these cases are compared
with the exact solution in Chapter 6, The effect of the corner on the
far field is also of interest. By using the well known asymptotic
solution of the edge diffraction problem, and the reflection from a
plane, it should be possible to identify a "diffraction coefficient"
for the tip. This has not been done in this work; however, it is felt
that the exact solution presented here is a good starting point for
such an endeavor,

As far as the authors could determine, there is nc published work
on the electromagnetic diffraction by a plane angular sector. The
scalar problem has been solved by Kraus [1], Redlow [2], and Kraus and
Levine [6]. Radlow has considered the problem of the diffraction of a

scalar plane wave by a quarter plane. He determined & two variable

integral representation of the scattered field. Using a generalizetion,

or extension, of the classical one variable Wiener-Hopf method, he then
Tfound the transform solution that forces the total field to zero on %he
quarter plane. It should be emphasized that his scalar solution is not
applicable to the electromagnetic case.

Kraus has approached the problem from enother point of view. In
his dissertation he developed a "uniformized" sphero-conal coordinate
system, and determined a scalar Creents function in this coordinate
system. His scattering body is a plane angular sector, which is a

degenerate case of one of the elliptic cone coordinate surfaces. An

s e e
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eigenfunction expansion was used to determine the Green's function for
both the hard and soft boundary conditions on the sector. The angular
functions in the eigentfunction expansion are called Lamelfunctions and.
are solutions of two coupled Lamé'equations. The first eigenvalue of

these equations for both boundary conditions was determined apprexi-

mately for several sector angles.
The article by Kraus and I.ecvine was published several years later.

It contains some refinement of the problem and the general solubtion for

DY M 2 Cou e g

an ellipbic cone scatbtering bedy; no numerical resulis were presented.

The "uniformized" sphero-conal coordinate system is used in this

R

paper to solve the vector problem. This is one of the six coordinate

Rty

systems in which the vector wave equation is separable. The coupled

SRR L)

Lamé'equations which occur are solved in this paper for the special
case of the quarter plane. The Lamé'functions are a very general class
of functions. They depend on an ellipticity parameter and two eigen-
values. As the ellipticity goes to one and the elliptic cones become
circular cones, the me{ functions reduce to Legendre functions and
trigonometric functions. For other limiting values of the ellipticity
and the eigenvalues, they become Tchebycheff polynomials and Mathieu
functions.

‘ This report hes been organized in the seme order as the problem

1 was solved. In order to determine the dyadic Green's function, it is
Lo necessary to have a complete sev of vector wave functions, and in
order to have a complete set of vector wave functions for this problem,

: : two complete sets of scalar wave functions are needed. Before the

B UV Y
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scalar wave functions car be determined, it is necessery to understand
the coordinate system.

Consequently, this reportbegins with a discussion of the sphero-
conal coordinate system in Chapter 2. The peculiarities of the coordi-
nate system are discussed and the effect of these pecwliarities on the
scalar wave functions is discussed.

In Chapter 3 the scalar wave equation for this coordinate system
is presented and then separated into the spherical Bessel's equation
and the coupled Lame'equations. The boundery conditions are examined
and the problem is separated into four different boundary value prob-
lems. The method for solving these problems is discussed and then the
first 192 eigenvalues and eigenfunctions are determined for the quarter
plane,

The vector wave funrtions are determined in Chapter U4, and in
Chapter 5 the dyadic Green's function is derived. Since the vector
weve functions are a new set of functions, it is necessary to investi-
gate them in some detail in order to determine the dyadic Green!s func-
tion. This investigation is chiefly concerned with orthogonality pro-
perties and normalization. A suggestion concerning normalization of
the Lame/functions is elso included in Chapter 5.

Some numerical results for the fields diffracted by and the cur-
rents on a quarter plame are presented in Chapter 6. The dominant
behavior of the fields and current near the tip and along the edges
is examined. This is done for both an infinitesimal dipole and a

plene wave source. The far field due to an infinitesimal dipole very
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close to the tip is also discussed and some patterns are presented.
The appendices are all comnected with Chepter 3. Appendix A N
includes a discussion of some of the self-adjoint properties of the
scalar wave equation. Appendices B and C describe the calculation of '~

the eigenvalues and eigenfunctions in detail, and Appendix D describes

another approach for calculating the eigenvalues and eigenfunctions.
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CHAPTER II

COORDINATE SYSTEM

This chapter contains a cescription of the coordinate system and
its peculiarities, and the effect of these peculiarities on solutions

of the wave equation.

Description of the Coordinate System

The uniformized sphero-conal coordinate system (r,68,9) [1,6] is

introduced by the following coordinate transformation:

r cos 041-k'Z cos? ¢ (2.1a)

X =
y =r sin ¢ sin ¢ (2.1b)
z = r cos pa1-k? cos® @ (2.1c)
where
k'2 =1-k3, O0<k®<1
0<o<T
Ogogan
r>0

and x, ¥y, and 2z are the usual Cartesian coordinates.

It is derived from the standard sphero-conal system in the follow-
ing manner.

Consider

r? = x% + y? + 22 (2.22)
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o 4+ X -2 =0 (2.2b)
3 u2  uBp® E.p2
1 : Py
4 2 2 2
7 2(_2_ - g 5 - hid = O (Q.QC)
A v b€y eZay2
,g t 1w
o and the inverse transformation
-
x = I&Y (2.3a)
; be

: _ rNp=-b2 Nb3-y2

(2.3p)

- r\fca_ua ‘Jc2_v2

' ¢ Ne2-b2

where

(2.3¢)

0<v@<b®

b2 < u2 < 2
3 The surfaces r, p, and v are mentioned by Morse and Feshbach [7],
Byerly [8], Moon and Spencer [9], and several other authors under the

: heading of conical coordinates.

B TR el “Lydg

In general, the surfeaces r, p, and v intersect at eignt points,
which introduces an eight fold ambiguity in fixing a point in space. In

order to achieve a one to one correspondence between (x, y, z) and

ANEGF S IO 4 T S

(r, p, v), the variables 6 and ¢, and the parameter k are used. They

are defined so that

LRt iRt L

cos 0=v/b 0<O<T (2.4a)

S e
=
N
]
o
N

0O<op<ean (2.4b)

o 2
[¢]
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k = b/c (2.4¢c)

In terms of the new variables, equations (2.3) become equations (2.1).
For a more detailed discussion of this "uniformization”, see Kraus and
Levine [1,6].

The surface 8 = 9, is an elliptic cone with its axis the x axis
and its tip at the origin. (See Figure 2). The angle between the x
axis and the surface of the cone in the z = O plane is 6;. The angle
bevween the x axis and the line passing through the origin anc one of
the foci of the ellipse in the y = O plane at the plane x = constant is

given vy € and is related to k by

K2 = L (2.5)
1 + tan® e cos® 6,
Note that for @ = O, the surface is a plane angular sector in the
y = O plene, centered around the positive x axis. For 6 = H/2, it is
the entire x = O plane. For 6 = I, it is again a plane angular sector
in the y = O plane, but it is centered around the negative x axis.

When 6 = I, ¢ is the semi-angle of the angular sector, and

k2= — Lt = cos2 e . (2.6)

14 tan® ¢
Thus, 8 = II, k® = 1/2 corresponds to the quarter plane shown in Figure 3.
The quarter plane lies in the y = O plane and is symmetric around the
negative x axis. The corner angle is 1I/2. When k% = 0, ¢ = I/2, the
corner angle becomes II, and the plane angular sector is a half plane.
When k% = 1, € = 0, and the plane angular sector reduces to the nega-

tive x axis.
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12
Note that for k% = 1, the surface 6 = 6, is a right circular cone.

Actually for this value of k® the coordinate system becomes the familiar
spherical coordinate system.

Now consider the elliptic half cone sketched in solid lines in
Figure 4; it is the surface ¢ = ¢,. The surfaces ¢, and 21 - ¢, com-
pose a complete elliptic cone with its axis the z axis. Its character-
isties are described in the same manner as the 6 = 6, surface using the
parameter k'2, For 9 = 0, the surface is a plane angular sector in the
y = O plane, centered around the z axis. For ¢ = JI/2, it is the hslf
plane z = 0, y > 0. For ¢ = 1, it is again a plane angular sector in
the y = O plane, centered around the negative z axis. For ¢ = 3[/2,
it is the half plane z = 0, y < 0, and for ¢ = 2, it coincides with
the ¢ = O surface.

The intersection of 6 = 6y and ¢ = ¢, is & line in the r direction.
The intersection of this line with the sphere r = r; yields the point
(ry, 8y, @y) as shown in Figure 5.

From equations (2.1) the unit vectors and metric coefficients are

determined using standard techniques.

(2.7a)

r =

HIX

x+Ly+
r Y

KN
N>

5 - -S5in o N1-k? cos® 6 ~1l-k'2 cos? o .

Nk2 sin® 6 + k'2 sin® ¢

4+ oS € sin @ N1-k2 cos® 6 5 (2.7b)

Nk? sin® ¢ + k'2 gin® ¢

k? cos 6 sin 6 cos @
Jk2 sin? ¢ + k' sin? ¢

+
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¢=k'®cos eos pging x

4+ 8in 9 cos o 1-k*Z cos? @

NkZ gin% 9 + k'2 sin? ¢

¥ (2.7¢)

. _ sin @ 1-k® cos 9 N1-k'2 cos? o e

JkZ 5in% 6 + k2 gin? ¢

2 The vectors T, P ® form & right-handed orthogonal system with each
}

c vector pointing in the direction of the increasing coordinate. (See
Figure 5.)

The metric coefficients are

= ap =1 (2.82)

_ rak? sin® 6 + k12 sin® g
.
v J1-k2 cos? 9

AT
(=3
D

(2.8v)

rNk2 sin? @ + k12 sin? ¢
N1-k$2 cos® g

~ he = (2.8¢c)

Using equations (2.8), the gradient operator is

. B 3
V=§‘§-+6 N1-k2 cos® @ d

r rNk? sin® ¢ + k'? sin® ¢ 0@

(2.9)
P NIK'Z cosf 9o
r k2 sin® 6 + k' sinZ ¢ dp

and the lLaplacian is

V2=i'..._5.<r2.§_>

r2 dr or

+ 1 [ﬁ_’,’f{é cos® @ 8%9 (\/l-ka cosZ @ %)

r2(k® sin® 6 + k'2 sin? @)

+.’l_k!2 0052 (p -a—aa <‘\) l"k’z Cosz (p 'é%p‘)] (2.10)

RS } RS Ab i S
hiaca 3




The Effect of Peculiarities of the Coordinate

System on Solutions of the Wave Equation

v From the description of the ¢ coordinate surface in the previous

section, it is seen that the variable ¢ is periodic with period 2I.
Thus in the absence of any physical boundaries in the ¢ direction it is
(- necessary that solutions, y{r, 6, ¢), of the wive equation satisfy the

following veriodicity condition.

v(r,8,9) = y(r,0,¢ + 21) (2.11)

This is the same condition that occurs in cylindrical and spherical
coordinate systems; it is a necessary condition if the solution is to
be a single-valued function of .
Now consider the y = O plane. (See Figure 6). It is divided into
four sectors which are the surfaces 6 = 0, 6 =, ¢ = 0,2%, and ¢ = I.
The @ = I surfaece is regular and presents no difficulties. The ¢ = 0,21
surface is described in two different ways, but this is taken care of
by the periodicity requirement just discussed. The @ = II surface is the
scattering body, and will have boundary conditions prescribed by the
nature of the physical problem, The 9 = O surface is a singwlar coordi-
nate surface. A point on it is described in two different ways depend-
ing on whether the surface is approached from above or below. For
x y = 0%, o point is described by (r,0,9). For y = 0~, the same point is
given by (r,0,2l-¢). At (r,0,9), 8 = ¥, and ¢ has a negative z compo-
nent. At (r,0,2M-p), 8 =—§, and é has a component in the positive z

: drection, This is easily seen by observing that the unit vectors
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point in the direction of the increasing coordinate. It is also evident

frem eauations (2.7).
In order to have continuous scalar fields, it is necessary that
¥(r,0,p) and VW(r,9,p) be continuous. For continuity of v(r,8,p) on

the 8 = O surface.
¥(r,0,9) = ¥(r,0,21 - @) (2.12)
Using the periodicity in ¢, this can be written
¥(r,0,9) = ¥(r,0, - 9) (2.13)

Inspection of equation (2.9) indicates that the following two equations

must be satisfied for the gradient to be continuous at 6 = 0.

A (r,0,0) = - X (r,0, - o) (2.14)
d6 Y]
§'\¥' (r,O,qo) = - @j{ (r,O, - CP) (2°15)
P op

Equation (2.15) is a necessary consequence of equation (2.13), so it is

not an independent equation.

[}

Next consider the four lines described by (6 = I, ¢ = 0, 2II),
(=1, ¢p=T), (6 =0, ¢ =0, 2N, and (6 = 0, ¢ = MN). The two lines
bordering 6 = Il are part of the scattering surface and will have bound-
ary conditions prescribed by the physical problem. Consider the line
(6 =0, ¢ =0), On*the ¢ = O surface, ¢ = y and 8 is in the y = O
plane. On the 6 = O surface & = y and @ is in the y = O plane. In

order to have a continuous gradient at the line (6 = 0, ¢ = 0), it is
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necessary that various components of the gradient behave properly as
the line is approachtied from different directions. For example, con-
sider the componeni of the gradient which is perpendicular to the
y = 0 plane. On the 6 = 0 surface, it is given by W ° 6. On the
@ = O surface it is given by V§ * ¢. As the line (6 = 0, @ = 0) is

approached., it is necessary that

~

LimVy « ¢=LlimVy - 0
0 »0F ¢ —O0F (2.16)

(p'to e:o

Kraus and Levine have investigated all of the necessary conditions on
the components of the gradient and have determined that they are auto-
matically satisfied for solutions of the wave equation. For details on
this rather ingenious derivation, see their paper [6].

To summarize, the "boundary conditions" imposed by the coordinate

system are given by equetions (2.11), (2.13), and (2.1h).

W(T,Q,CP) = ‘1'{(1‘,9,(9 + 2]'[) (201-1)
W(r,O,@) = W(rsoa = w) (2'13)
N (r,0,9) = - X (r,0, - ¢) (2.14)
o8 06
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CEAPTER III

SOLUTION OF THE SCALAR WAVE EQUATION

This chapter contains a description of the scalar problem and the
separation of the scalar wave equation into a spherical Bessel's
equation and two coupled Lamé equations. The angular boundary values
are discussed and it is seen that the Lame problem can be decomposed
into four boupdary value problems, the sclutions of which comprise
two complete sets of functions. Fach of these four problems is dis-

cussed in detail and then the solutions are tabulated.

Description of the Problem

As mentioned earlier, the primary purpose of this repart is to
determine a dyadic Green's function for the plane angular sector. In
order to do this, solutions of the vector wave equation are needed,
and in order to solve the vector wave equation, solutions of the
scalar wave equation are needed. The solution of the scalar wave
equation is described in this chapter.

The scalar wave equation is

(v2 + «2) ¥(r,0,¢) = 0 (3.1)
where k is the usual wave number. Using the expression for v

(equetion 2.10) in the sphero-conal coordinate system, this becomes

20
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JL d o w 1
r2 (ar (x ar)) + 72 (x© sin< 6 + k'2 sin® ¢) (3.2)
[l -k cos? e { [1-K2 cos? 6 b))
36 a5
9 1)
+ - —'2 2 —— - |2 2 r— + 2 - .
|1 k'S cos® ¢ 5 ( Il k'S cos® ¢ 5 Y+ xc ¥ =0
Using standard separation of varigbles techniques, the solution is
written as
${r,6,6) = R(r) o(6) &(¢) {3.3)
and substituted into equation (3.2) which separates into
S (2B 4 (22 -y (V1)) R =0 (3.5)
dr dar
and
w2 anel g o ~ 12 oos2 8 O
2- 12 cos? 8 % (|1 -12 cos? 6 o= (00)) (3.5)

[T e . 2,8 12 cos? 4 <- (06))
+ ll k'S cos” ¢ 5 ( ll k' cos® ¢ 5 (09))

+ v (vi1) (k2 sin 8 + k' sin ¢) 00 = O .

Equation (3.4) is the spherical Bessel equation with solutions

(J\’ (;:r): E‘j J\)+1/2 (Kr) (3-58-)

n{®) () = lz——:_: H\(»E:z/e (kr) (3.6b)

The e*J¥t time convention is used here and thus hie)(xr) represents

R(r) =

a wave that is propagating away from the coordinate source. The
order of the Bessel function, v, is determined from equation (3.5) and

the boundary conditions on 8 and ¢,
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Before taking a closer look at equation {3.5), the restrictions
imposed by the coordinate system "boundary conditions" will be

investigated. From equation (2.11)

o(¢) = o(¢ + 2n) (3.7)

From equation (2.13)
o(0) ¢(¢) = 6(0) o(-4) (3.8)

From equation (2.1k)
0'(0) ¢(¢) = -0'(0) ¢(-4) (3.9)

To see what the last two conditions mean, separste the functions
6(0) and ¢(¢) into even and odd parts. Since 8 is restricted in
the range 0 < 6 < 7, the terms even and odd here simply mean that

0e(0) = 0 and 8,(0) = 0.

o{e)

0.(0) + 0,(8) (3.102)

o(9) = 6o(¢) + 60(9) (3.10b)

Using equations (3.10) and the properties of even and odd functions,

equation (3.8) can be written

00(0) ¢c(0) + 65(0) 95(¢) = 0(0) 9e(¢) - 0e(0) ¢0(9) . (3.11)

This can be satisfied if

0o(¢) = 0, i.e. ¢(¢) is even (3.12)
or if

0e(0) = 0 (3.13)
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This last condition, along with the fact that Oé (0) = 0, implies
that 0, (8) = 0. Thus equation (3.13) implies that

o(8) is odd . (3.1L4)

Using equations (3.10) and the properties of even and odd functions,
equation (3.9) can be written

0o(0) 8.(6) + 85(0) 0.(s) = - 0,(0) 65(8) + 05(0) 85(s) . (3.15)

This can be satisfied if

0a(¢) = 0, i.e. ¢(¢) iz odd (3.16)
or if
0. (0) =0 . (3.17)
This last condition, along with the fact that 65(0) = 0, implies

that 0,(8) = 0. Thus equation (3.17) implies that
0(6) is even . (2.18)

In summary, equation (3.8) can be satisfied if ¢(¢) is even or if
0(8) is odd. Equation (3.9) can be satisfied if ¢(¢) is odd or if
0(8) is even. The only non-trivial combination of these conditions
is both 0(8) and $(9) even or both ©(6) and #(¢) odd. Thus the
coordinate imposed "boundary conditions" require the solution of

equation (3.5) to be written in the form

Cele) da(o) )
0(8) o(4) = (3.19

05(0) oo(4)

with ¢g(¢) and ¢,(¢) periodic with period 2n.

L
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The physical boundary conditions are imposed at the plane angular
sector and will be =onditions on 0(8) since the plane angular sector
is described by & = 7. It will be seen in the next chapter that the
solution to the vector problem requires both Dirichlet and Neumann
scalar solutions; that is, two types of 0(8) functions are needed,
those that satisfy 0(n) = 0, and those that satisfy 0'{n) = 0.

To completely speaify the problem, it is necessary to normalize

the functions. A convenicnt normelization is accomplished by setting

0e(0) = ¢,(0) =1 (3.20a)

and

05(0) ¢é(o) 1. (3.20b)

Equation (3.5) can be separated into the following two equations

|1 - k2 cos? 6 é% (|1 -x2 cos? o %% )
+ (v(vil) k2 8in2 0 + y) 0= 0 (3.21)

Il - k'2 cos? ¢ & (Il - ¥° cos? ¢ 23)
a¢ dad
+ (v(v+l) k"% 5in® ¢ - u) 6 =0 . (3.22)

Considering the boundary conditions, the solution of these equations

is actualiy four separate problems.

I. Dirichlet

A. Even
Solve equations (3.21) and (3.22) subject to the boundary

conditions
| (1) 04,(0) =1 0e1(7) = 0
(2) ¢g1(0) =1 0e1(8) = g1 (¢ + 2a)




PR - — -

25
B. 0d4d
Solve equations (3.21) and (3.22) subject {o the boundary

conditions
(1) 001'(0) =1 Gor(n) =0
(2) ¢o1'(0) =1 001(8) = ¢,(o + 2m)

JI. Neumann

A. Even
Solve equations (3.21) and (3.22) subject to the boundary

conditions
(1) 0gp (0) =1 Oe2'(n) =0
(2) ¢ep (0) =12 0en($) = e2(¢ + 21)

B. 0dd
Solve equations (3.21) and (3.22) subject to the bcundary

conditions
(1) 002'(0) =1 Bo2'(n) =0
(2) 4’02'(0) =1 ¢02(¢) = ¢02(¢ + 27)

Before investigating each of these problems separately, some
general results are discussed. First, note that each problem is two
two-parameter Sturm-Liouville problems. Thus, for each value of v in
equations (3.21) and (3.22) there are an infinite number of u's which
can satisfy each equation. Kraus and Levine [6] have shown that orly
a finite number of u's are needed for each v in order to have a
complete set of solutions. Also note that equation (3.5) is a two-
dimensional Sturm-Liouville type equation. It can be shown that the
two-dimensional Sturm-Liouville type operator is self adjoint and
positive definite and, therefore, that the eigenvalues v are all

positive. These results will be used to find the eigenvalues v and u.

+
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It follows from the self adjoint properties of the differeatial
equations that the solutions to the Dirichlet and Neumann problems

are orthogonal. The orthogonality relationship takes the form

[s 0q(8) 0n(8) 0p(8) 0,4(6) a5 =0 n #p (3.23)

where the subscripts n and p indicate that the eigenfunctions
correspond to the eigenvalue pairs (vn, up) and (Vps wp). The surface
S is spheriecal. It is understood that all of the eigenfunctions in
equation (3.23) belong to either the Dirichlet set or the Neumann set.
Dirichlet eigenfunctions are not necessarily orthogonal to Neumann
eigenfunctions.

The self-adjoint property and the positive~definite property of
the two-dimensional Sturm-Liouville type operator are proved in
Appendix A. For proof of completeness and orthogonality, see Kraus

and Levine(1,6].

Method of Solution

IA. Even Dirichlet Problem

The usual approach to an unfamiliar differential equation is to
try a power series solution. By assuming a solution to equation (3.21)
of the form

0c1(8) = ] Ap cosmg/2
m=0

it is seen that there are two independent solutions, one with m even
and the other with m odd. By imposing the Dirichlet boundary conditionm,
the solution with m even can be eliminated. Instead of writing the

solution in the form
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0e1(6) = I Ap cos™0/2
m=1,3,...

it ig found to be more convenient to use

0e1(8) = ] Ap cos (2m - 1/2) @ (3.24)
m

*

vhere the summation is over all m. The recurrence relation for

equation (3.2k) is

bpy B Uns 32“““ = 5) _ u(vi)) (3.25)

(bm -1)° (EE.-l) + v(v+1)k2 N

— M)
y 2

+ Ay (

k2 ( (bm + 1)(km + 3)
u

3 - viv#l)) = 0

+ Aped

This set of equations can be written in matrix form, and a determinant
can be idertified which must be zero in order to have a non-trivial
solution. Ince[10] has considered a similar prcblem which must have
the same solution as this problem. He sets up the prcblem in the same
way and identifies an infinite determinant which must be zero. With
some rather straightforward menipulations. an infinite determinant of
the type considered here can be written in the form of an infinite

continued fraction. The fraction for this problem is

- 1+ k° . (2v - 1)(2v + 3) ¥2/9 16 (2v - 3)(2v + 5) k2/225
4 1+ X2 - bh/9 + 1 + k2 - kn/25

36 (2v - 5)(2v + T) k2/1225
+ i + k2 - bn/ko SR

(3.26)

where
p=h - vivkl) k2 , (3.27)

[P VI T
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Next, a sclution to equation {3.22) is essumed. It is found that there

are two independent solutions that csn be written in the form

9c1(¢) = ] Bop cos 2m o (3.28)
m=0

91(¢) = ] Bom+l cos (2m#l) ¢ (3.29)
m=0

The recurrence relations for equation (3.28) are

v(v+l) k'2

K12
Bg ( - u) + By -+ (2 - v(v#1)) =0 (3.30a)

5o (-v(v+1) k'2) +Bp (b (K12 _ 1) 4 v(v#l) k'@ _ 1)
I — 2 2

+ B -}5)—:?- (12 - v(v+l)) = 0 (3.30b)
x'e
Bop-z -~ ((2m-2) (2m-1) - v(v+l)) (3.30¢)
12 12
+ B ((m)? (5 1) + XX

+ Bono ’—‘;—2 ((em+2)(2m+1) - v(v#1)) =0 m > 2

and for equation (3.29)

12
Bopy ~p ((20-1) (2n) - v(v1)) (3.31)

1 2
+ By ((2m1)? (2 00) 4 v) K17

12
+ Bopa3 E‘_h._ ((2mt3) (2m#2) - v(v#1)) = 0

As before, these equations can be written in matrix form, and the
determinant which must be zero can be identified. The determinantal

equations can be written
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=) () (wi2) kB (vB-9) (v-2) (v+h) 1 1H/(16)2
T 2-x'2-n/h - 2 - k'2 - n/16
(v2-25) (v-b) (v6) k'4/(48)2
- 2 - k'2 - n/36 = esses (3.32)
for equations (3.30) and
2_1)(v- 4/(6)2
_ 2 a2 v 4)(v-1)(v+3) k
no=vlvil) X%/ + 2 - k 2 - k'@ - n/9
2_ _ Wy 2
(v2-16) (v-3)(v+5) k'4/(30) (3.33)
- 2 - k'@ ~ n/2s = eeees
for equation (3.31) where
p=1/2 (-n + v(v+l) k92) . (3.34)

In order to find the eigenvalues for problem IA, it is
necessary to solve equations (3.26) and (3.32), and equations (3.26)
and (3.33) simultaneously. The solutions are the eigenvalues (v,u)
of the even Dirichlet problem. The manner in which this is done is
shown in Appendix B. The eigenvalues are tabulated for the quarter
plane problem (k°=1/2) in Table 1 (pages 4l tolh ).

On.e the eigenvalues are determined, the eigenfunctions can be
found by solving the recurrence relations. This again involves the use
of continued fractions and is explained in Appendix C. The form of the
eigenfunctions is shown in Table 1, and the values of the coefficients

are given in Table 2 (pagesh5toS56 ).

IB. 0dd Dirichlet Problem
Solutions to this problem may be expressed in terms of the

standard Lame polynomials. The eigenvalues v are integers, and there

[ )
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are exactly v u's for each value of v. The soluticns can be found
in the same way as in prohlem IA. Series solutions are assumed, and
it is found that the series are finite for integral values of v if

they are written in the following forms. For equation (3.21),

N
001(8) = I Appsy sin (2m#1) 6 (3.35)
m=0
N
601(9) = Z A2m sin 2m ¢ (3-36)
m=1
N
0g1(8) = r - k% cos® 8 § Aoy sin (2m#i) 8 {(3.37)
m=0
N
01 (8) = 11 - %2 cos2 6 | Aoy sin 2m 6 (3.38)
m=1

where N is an integer that depends on the eigenvalue v. Equations
(3.35) and (3.37) describe one independent solution; equations (3.36)
and (3.38) describe the other independent solution.

Each of these solutions gives rise to a recurrence relation and
a continued fraction equation for the eigenvalues. The recurrence

relations for equation (3.35) are

2 2 2
Ay ((k; -1) + M?—)k— + u) + A3 kT {6-v(v+l)) = 0 (3.39a)
k2
Aop-a T ((2m-1) (2m) - v(v+1)) (3.39p)
2 2
+ Aopsy ((2m+l)2(%5--1) + 212:%2—5— + u)

2
+ o3 o ((2m3)(2me2) - v(w1)) =0 m 21
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The recurrence relation for equation (3.36) is
x2
Apm-2 " ((2m-2)(2m~1) - v(v+l))} (3.40)
2 2
+ Aoy ((2m)2 (%; -1) + 2£!§£2.§..+ u)

2
+ bonez 5= ((am2)(2mt1) = o(v1)) =0 m21, ho =0

The recurrence relations for equation (3.37) are

k2 3v(v+1) k2
A ((——-- e
3l > 1) A

sweE oy =0 (3.4

Aoma l‘fl ((2m#1)(2m) = v(v+1)) (3.41b)

2
. v(v#l) k . )

+ Aomey ((2m1)2 (’-‘23 a)
k2
+ Aome3s " ((2m+1)(2m+2) - v(v#l)) =0 m>1

and the recurrence relation for equation (3.38) is

A2p-2 1-51? ((2m)(2m-1) ~ v(v+1)) (3.42)

+ han (o (€ g MRS |
+ Ao l}?— ((2m)(2m#1) - w(vhl)= 0 m> 1, Ag=0 .

Each of these recurrence relations can be written in matrix form and the
corresponding determinantal equations found. These equations written
in the form of continued fractions are, for equation {3.35) and

equation (3.37),
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(V=) (v=1)(+3) x"/(6)?

n = -v(v+l) k2/2 + 2 - k2 -
2 - k2 - a/s (3.43) -
(v2-16)(9-3) (v+5) KY/(30)3
- 2 - ¥% - n/25 e .
where
p=1/2 (n - v(vil) ¥2) (3.14k)
and for equation (3.36) and (3.33),
2_ _ byear2
n = b(o?) - 90 2)(\!4"11) k"/(8) (3.45)
2 - X% - n/16
(vR-25)(v-b)(v+6) Kk"/(18)2
- 2"1(2"71/36 - gevee
where y is again given by equation (3.u4k).
The same forms of solution are employed in equation (3.22)
with the coefficients B instead of A. -
N
¢01(¢) = ] Bopsy sin (2m+l) ¢ (3.46)
m=0
N
901(¢) = § Bop sin 2m ¢ (3.47)
m=1
N
901(¢) = |1 - k'2 cos2 ¢ | Bopeq sin (2ml) ¢ (3.48)
m=0
N
$01(¢) = |1 - k'2 cos? ¢ | By, sin 2m ¢ . (3.49)
m=0

The recurrence relations are the same with k2 replaced by k'2 and

u replaced by -p. The eigenvalue equations are the same except that
k2 is replaced by k'2. The definition of ¢ is Just the negative of
equaticn (3.L4k).

wo=1/2 (-n + v(v+l) k'2) (3.50)
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The eigenvalues are found by simultaneously solving equatiecns (3.L4)
and (3.50). As previously mentioned, the eigenvalues v are integers,
and there are v p's for each value of v. For the actual method of
computation, see Appendix B. The eigenvalues are given in Tsble 1.
With the eigenvalues determined, the eigenfunctions ars found
by using the recurrence relations. This is done in Appendix C. The
form of the eigenfunctions is shown in Table 1, snd the values of

the coefficients are given in Table 2.

IIA. Even Neumann Problem

Solutions to this problem are also standard Lame polynomials.
The eigenvalues v are integers, and there are v+l u's for each value
of v. The even Neumann solutions can be found in the same way as the
previous sclutions. The solutions are expressed as suitable series,
and it is found that the series are finite for integral values of v

if they are written in the following forms

N
Oen(8) = | Appsy cos (2m+l) (3.51)
m=0
N
Oe2(8) = } Aoy cos 2m 6 (3.52)
m=0
5 N
0e2(8) = |1 - k% cos? & | Appey cos (2m+l) 6 (3.53)
m=0
N
0e2(0) = |1 - k2 cos® 6 ) App cos 2m 6 (3.5h)
m=0

vhere again N is an integer that depends on the value of v.
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With a few exceptions, the recurrence relations are the same as
for the odd Dirichlet problem. For equation (3.51), the recurrence

relation is

2
Aom.1 -"? ((2m-1)(2m} = wlvi1)) (3.55)

v(v+1) Kk
+—-——-—-——

2
+ home1 ((2m#1)2 (52— 1) + u)

2
+ Aomes ‘-‘h- ((2me3)(2mt2) - v(v1)) = 0
A,=0, m>0

For equation (3.52), the recurrence relations are

2

A (3132})—5;-+ u) + A %?-(2 ~v(v#l)) =0 (3.56a)
- 2 .

Ao (_Xiﬁgll_ﬁ_) +ap B2 1) 4 212252_53.+ n) (3.56p)
+ Ay %? (12 - v(v#1)) =0

Appo 1_13 ((2n-2)(2m-1) = v(v+1)) (3.56¢)

v{v+l) k2

+ Ao ((2m)? <£f— ) 4 2ol

+ )

2
+ Aope2 %; ((om+2)(2m+l) - vw(v+l)) =0
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For equation (3.53), the recurrence relation is
x2
Aop-1 7:'((2m+1)(2m) - v(v+l)) (3.57)

2 v#l) k2
+ Ao+l ((2m+l)2 (l‘fé— -1) + Y-(-—z—)—'-‘l- u)

1]
o

2
+ Aomss %T‘((2m+l)(2m+2) - v{v+1))
A3 =0, n2>0

For equation (3.54), the recurrence relations are

fg ("_(23%13.‘3+ W) + Ay (;"_(Z_"l_)lz. ) =0 (3.582)

b0 2 - v(w)) + ap ) L XHLE Ly (55
+Ah%-%-vhﬂn=0

Aon-2 %? ((2m)(2m-1) - v(v+1)) (3.58¢)

+ Aoy ((2m)? (%§-~1) + 313552—53-+ u)

+@m2¥-umﬂmﬂ)-ﬂwn)=o m> 2

As before, each of these recurrence relations can be written in matrix
form and determinantal equations found. These equations, written in
the form of continued fractions are, for equations (3.51) and (3.53),

(v <b) (v-1)(v+3) K4/(6)2

n = y(vkl) k2/2 + 2 - k2
2 - k2 - n/9

(v2 -16)(v-3)(v+5) K%/(30)2
- e-k?"n/es T e (305”)
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' and for equations (3.52) and (3.5%4),
‘ N = ~(v2-1)(v)(w2) K8 (v2-9)(v-2) (v+h) K¥/(16)2 (3.60)
2 - k2 - /b i 2 - k2 - n/16 '
(v2-25) (v-k) (v+6) Kkk/(48)°
- 2 - %2 - /36 . veune
where
p=1/2 (n ~ v(vsl) K°) . (3.61)

Note that these sre the same as equations (3.33) and (3.32) except

for k2 and k'2.

The same form of solutions is assumed for eguation (3.22) with

the coefficients B instead of A.

F IS A0 A SRR St

5 N

: te2(¢) = | Bomed cos (2m+l) ¢ (3.62)

A m=0

3 N

3 ¢e0(¢) = ] Bop cos 2m ¢ (3.63)

- m=0

!/

3 N

E de2(d) = !l - k'2 cos? s z Bop+y cos (2m+l) ¢ (3.64)

i ) m=0

: : N

] ¢eo(9) = Il - X'2 cos? ¢ )] Bop cos 2m ¢ (3.65)
m=0

The recurrence relations are the same with k© replaced by k'2 and u

Sed Eenair st h RS

o3

replaced by -u. The eigenvalue equations are the same except that

k2 is replaced by k'2. The definition of u is

s AR LU

p=1/2 (-n + v(vil) x'2) (3.66)

Pt
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The eigenvalues v and ¥ are found in the same way and are tabulated
in Table 3 (pages 57 to 60 ). The form of the esigenfunctions is
also shown in Table 3, and the values of the coefficients ure given
in Table U (pages 61 to T2).

Together with the solutions of the odd Dirichlet problem, the
eigenfunctions compose a complete set of functions that correspond to
the Legendre polynomials in the spherical coordinate system. In fact,
as the parameter k2 approaches 1, the sphero-conal coordinate system
degenerates into the spherical coordinate system, and the Lame poly-
nomials degenerate into lLegendre polynomials. For each value v = n
there are 2n+l standard Leme polynomials. In principle, the solution
to this problem could be found entirely in terms of these polynomials,
since they are complete and can be used to represent any piecewise
continuous funection. In actual practice, the difficulties encountered
because of the boundary conditions would have made this approach
intractable. The Lameé polynomials have been studied by several
authors. They are discussed by Ince[10,11], ErdelyiliZ], Prasad[13],

and several others, and are tabulated as power series by Arscott[1h].

IIB. 044 Neumann Problem
This problem is very similar to the even Dirichlet problem. A
series solution to equation (3.21) ir assumed, and it is found that the

one independent solution can be written in the form

002(8) = ] Am sin (om - 1/2) v (3.67)
m

The recurrence relaticn is given by equation (3.25) and the eigenvalue

Vs e e Eremm i et B b e RO T W r
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E . equation by equation (3.26). Two independent solutions of equation

; (3.22) are found in the form

.

g ®02(¢) = ] Bom sin 2m ¢ (3.68)

: m=1

: ®

: 002(¢) = ] Bops1 sin (2m+1) ¢ (3.69)
m=0

S et i

The recurrence relations and eigenvalue equations are the same as

for equations (3.36) and (3.35) with k2 replaced by k'? and p
replaced by -p. The simultaneous solution of the eigenvalue equations
yields the eigenvalues. The computational method is the same and is
% shown in Appendix B. The eigenvalues are tebulasted in Table 3. The

eigenfunction coefficients are determined in Appendix C and are

hEN

tabulated in Table 4. The odd Neumann problem was also solved using

«35‘:55 et

a variational method; this is described in Appendix D. The first

few eigenvalues and eigenfunctions were determined and compared with

PO EATY T

the solutions obtained by the more exact method. The comparison is

reasonably good and is shown in Appendix D.

ettt P e Y

Discussion of Tables

Tables 1 through U4 show all of the eigenvalues and eigenfunctions

for v less than 9, and k2 = 1/2. 1In Table 1, both the even and odd

Gt re e

Dirichlet eigenvalues are tabulated, as well as the form of the
corresponding eigenfunctions. Note the grouping of the eigenvalues.

If n is an integer defined such that n - 1/2 < v < n + 1/2, there are

AR AN s b e S

2n +1 u's for each v. Alsc note the pattern that is forming for the

values of v. As v increases, the value of v corresponding to large
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positive values of u is approaching n + 1/2. As p decreases for any
one group of eigenvalues, the value of v decreases until for large
negative p, v is approaching n. The same type of pattern is noticed
in Table 3 where both the even and odd Neumann eigenvalues are
tabulated. For the Neumann eigenvalues, there are agsin 2n +1 u's
for each v; v approaches n - 1/2 for large positive p, and n for
large negative p. Also note the pattern forming for the eigenvalues
of the odd Dirichlet end even Neumanw problems (Lamé polynomisls).
As v increases, the eigenvalues for these two problems are beginning
to coincide.

In Table LU, one should be careful when interpreting the
coefficients of ] Am sin (2m - 1/2) 6. Coefficients with zero and’
negative subscripts correspond to sine functions with negative angles.
Thus if the eigenfunctiocns are expanded in series of sines with positive
angles, it is necessary to reverse the signs of &ll coefficients with
zero and negative subscripts. This problem does not arise in the
Z Am cos (2m - 1/2) 6 eigenfunctions since the cosine function is even.

‘"he eigenfunctions in Tables 2 and 4 are normalized such that
0e(0) = ¢(0) = 1 and 0 (0) = 9.(0) = 1. Coefficients with magnitudes
less than 5 x 10"h are not given. Eigenvalues should be accurate to
within + 5 x 1073 even in the cases of least accuracy. This accuracy
is not limited by the method and can be improved if desired. Since
some of the eigenfunction coefficients are very sensitive to
inaccuracies in the eigenvalues, it is expected that their accuracy
is not as good. The centinued fraction method used to find the

eigenfunction coefficients, explained in Appendix C, tends to minimize
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this problem. In the case of the Lame polynomials, the continued
fraction method is not used, and it is expected that some of the
coefficients with large subscripts ere not precise. This occurs
because the computation of the large subscripted coefficients ususlly
involves the subtraction of two large numbers in order to determine
a small number. These and other computational problems are discussed
in the appendices.

Two other eigenvalues were computed for different values of k2.
The lowest eigenvalues were computed for k2 = 0.1, corresponding to a
plane angular sector with a corner angle of 143.14°, and for k2 = 0.9,
corresponding to a plane angular sector with a corner angle of 36.86°.
These eigenvalues are given in Table 5 (page 73 ). The dominant
behavior of the vector fields near the tip of the plane angular sector
is governed by these eigenvaiues; this is discussed in Chapter VI.

All of the computations for the eigenvalues and eigenfunctions

were done on the IBM 360/75 computer.
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Table 2 - Dirchlet Eigenfunction Coefficients

E v=0,296 1=0.090

45

Ag = 1..048 By = 1.036

Ay =-0.057 B2 =-0.03k

A_;= 0.011 By =-0.002

A o= 0.001
E v= 1.425 ¥=0.915 0 v=1.000 1=0,000 E v=1,130 n=-0,455
Ap = 0.173 Bo = 1.417 A} = 1.000 B; = 1.000 Ay = 1372 By = 1.010
A = 0.84 Bp =-0.405 |Ay = O,m>1 By = O,m>1 |A; =-0.299 B3 =-0.009
A_1=-0.021 Bh =-0.011 A1=-0,06L Bs =-0.001
A2 = 0.00k Bg =-0.001 Ay =-0.006
A 5=-0,001 A_p=~0,C03
E v=2.480 u=2.670 0 v=2.000 u=1.500 E v=2,290 u=0,215
Ay = 0.121 By = 2.470 = 0.500 B, = 1.h1h = 0.343 = 1,166
Ay = 0.043 B, =-0.015 ﬁi = 0,m>2 Bi = 0,m>1 22 = 0.831 l =-0.160
A-1= 0.842 By = 0.cko A_1=-0.113 BS =-0,005
Ap =-0.006 Bg = 0.002 hp =-0.056
Aoz 0.001 A_2=-0 001

A3=-0.C03
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Table 2 - (continued)

L6

0 v=2,000 u=-1.500 |E v=2,040 u=-1.705
A; = 1.1k By = 0.500 | &g = 2.297 By = 1.409
Ap = 0,1 By = 0,m2| Ay =-1.000 B, = 0.862
A_=-0.325 B), =-0.003
Ap = 0.033
A_p=-0.007
Ag = 0,002
A_3=-0.001
E v= 3,495 p= 5,440 |0 v=3,000 u=3.873 E v=3,410 u«l.535
Ag = 0.023 By = 4.9kh | 4y = 0,032 B) = 1.968 |Ap = 0.248 By = 1.539
Ap = 0,104 Bp =-h.343 | A3 = 0.323 B3 =-0.323 |4} = 0.122 B3 =-0.552
A_3= 0.009 By = 0.391 [ A, = 0,m>3 By = O0,m>3 [A_;= 0.7T37 Bg = 0.013
A> = 0,865 Bg = 0.007 A>"=-0.0kL By = 0.001
A_2=-0.001 Bg = 0.001 A_>=-0.059
A_3=-0.003
0 v=3.000 u=0.000 E v=3,1k5 u=-0.825 |0 v=3.C00 u=-3.873
Ay = 0.70T B, = 0.707 | Ap = 0.503 By = 0.276 |Ay = 1.968 By = 0.032
A, = 0,m>2 Bp = 0,m>2 Ay = 0.997 Bp = 0.820 jA3 =-0.323 B3 = 0.323
A_i= -0.341 By, =-0.092 |ip = O,m>3 B, = 0,m3
5 =-0.172 Bg =-0.00k
A_g— 0.01%4
A3 =-0.003
A_3= 0.001




Miakiasz ey

P

~a

: ol
r Pable 2 - (continued)
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2 E V= 3.010 u=-3.9%0

: Ag = b.575 Bl = 0.141

] Ay =-2.Thh P. = 0.860

! A_1=-1.152 Bg =-0.001

: A, = 0.283

1 A_o= 0.030

A3 = 0.006

3 A_3= 0.001

4

X E v=k, 499 u=9,225 0 v=b.000 1£7.190 E v=b. 470 1=3.790

! Ao = 0.020 Bg= 10.544 | Ao = 0.026 By = 3.421 | Ay = 0.077 By = 2.377
1 A, = 0.005 Bp=-11.260 [Ay = 0.237 B3 =-0.669 |A) = 0.208 B3 =-1,525
T ATy= 0.068 By= 1.752 |Ap = O,mph By = 0,m3 {A_3= 0.0kl Bs = 0.1k5
2 A, = 0.002 Bg=- 0.035 Ay = 0.757 By = 0.003
: A_o= 0.876 Bg=- 0.001 A_p=-0.015

E Ay = 0.065

2 A), =-0.003
; 0 v=4,000 u=2.190 E v=h,280 u=0.335 0 v=h.000 u=-2,190

f Ay = 0.109 B, = 0.806 | Ag = 0.37% By = 0.410 | Ap = 0.806 By = 0.109
' Az = 0.435 B) =-0.153 {A; = 0.192 Bp = 0.849 | Ay =-0.153 B3 = 0.435
= An = 0,m3 By = O,mwh | A3= 0.701 B) =-0.263 { Ay = Oyl B = 0,m>3
3 Ap =-0.140 Bg = 0.004
. Ap=-0.132
- Az = 0.007
: A_3=-0.001
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Table 2 - (continued)

L8

E v=h4.050 up=-2.575 0 v=4,000 u=-~T.190 E v=k.005 u=-7.205
Ag = 0.751 B = 0.313 |A) = 3.421 By = 0.026 = 0.001 Bp = 0.023
Ay = 1.k82 B3 = 0.76k |A3 =-0.669 By = 0.237 |A} =-7.029 Bp = 0.1CT
A_,=-C.889 Bg =-0.07h |A) = 0,w3 By = O,wh |A)=-3.546 B, = 0.871
Ay"=-0.464 BT =-0.003 Ao = 1.257
A_o= 0,103 A_o= 0.289
Az = 0.01k A3 =-0.027
A_3= 0.002 A_3= 0.005
Al = 0.001 Ay =-0.001
E v=5.500 u=14.013 0 v=5,000 p=11.k489 E v=5.490 p=7.110
Ag = 0.006 By= 23.021 [A) = 0.003 By = 5.809 |4, = 0.058 By = 4,102
A; = 0.016 Bp=-27.689 | A3 = 0.020 B3 =-1.915 |A; = 0.021 B3z =-3.739
A= 0.002 By= 6.0% hg = 0.188 Bs = 0.187 A_y= 0.195 Bs = 0.651
Ay'= 0.093 Bg =-0.372 | Ay = 0,m>5 By = 0,m>5 |Ay = 0.011 By =-0.013
A_,= 0.001 Bg =-0.006 &_,= 0.792 Bg =-0.001
A3 = 0.883 A3 =-0.00b
A = 0,m3 A_3==0.069
A_)=-0.003
0 v=5.000 u=5.196 E v=5.499 y=2.110 0 v=5.000 u=0.000
= 0.095 = 1.319 = 0,061 By = 0.658 [A, = 0.125 By = 0.125
ﬁﬁ = 0.306 gﬁ =-0.306 22 = 0,379 Bg = 0.992 | a3 = 0.437 By = 0.L437
Ap = 0,m>4 By = O,mk |AZ;= 0.032 By =-0.722 |A5 =-0.087 Bg =-0.087
Ay'= 0.70k Bg = 0.071 |A = 0,m>5 By = 0,m>5
A_p=-0.026 Bg = 0.001
A3 =-0.151

AZ5= 0.002
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Table 2 - (continued)
E v=5.150 p=-1.170 [0 v=5.000 p=-5.196 [|E v=5.015 p=-5.335
Ap = 0.551 By = 0.49k | Ay = 1.319 Bp = 9.472 [ Ay = 1.220 By = 0.062
Ay = 0.245 By = 0.676 | A, =-0.306 B), = 0.306 |A; = 2.615 B, = 0.228
A = 0.778 Bg =-0.172 |A, = O,m>b B = O,m>h | A_,=-2,127 Bh = 0.785
Ap =-0.366 B = 0.001 Ay'=-1.247 Bg =-0.071
A_p=-0.26k A_o= 0.438 Bg =-0.003
A3 = 0.046 A3 = 0.110
A_y= 0.009 A_-=-0.010
Ay™= 0.001 A= 0.002
0 v=5.000 p=-11.489 ([E v=5.000 u=-~11.493
Ay = 5.809 B3 = 0.003 |Ap= 21.014 By = 0.020
A3 =-1.915 B3 = 0.020 A1=—15.82h B, = O. 096
A5 = 0,187 B = 0.188 |A.7=-9.110 Bs = 0.88k4
Ap = 0,5 By = O.m>5 = 3.952
A_2- 1.261
A3 =-0,26k
A_3=-0.023
Ay =-0.00L
A_)=-0.001
E v=6,520 3=19.805 |0 v=6,000 u=16.783 |E v=6.499 y=11.k455
Ag = 0.005 Ry= 44,205 [Ay = 0.002 By= 11.1h1|Ag = 0.136 By = 7.730
A; = 0.001 By p==57.427 1A) = 0.016 Bo=- 3.973 | A; = 0.0L0 33 =-8.8k0
AZy= 0.015 Bh- 15.840 [Ag = 0.155 Bg= 0.438 A_y= 0.050 Bg = 2.259
A_p= 0.091 Bg=- 1.64k |A; = O,m>6 B= O,m>5 |[A, = 0.153 B7 =-0.1%7
A3= 0.893 Bg= 0.025 AZp= 0.028 By =-0.002
Ay = 0,m<3 Byp= 0.001 A3 = 0.665
.Es_3=-0.010
Ay, =-0.059
Ag =-0.003
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Table 2 - (continued)

0 v=6.000 u=9.11k E V=6.465 1=k, 850 0 v=6.000 ¥=2.832
Ay = 0.015 B, = 1.813 |Ap =-0.137 By = 0.995 [A, = 0.103 By = 0.268
A3 = 0.0Th B) =-0.780 [ A; =-0.080 By = 1.360 |#; = 0.284 By = 0.652
Ag = 0.235 Bg = 0.083 | A_3= 0.419 B), =-1.6L41 |Ag =-0.057 Bj =-0.162
Ap = 0,m>5 Bp = 0,m>6 | A, =-0.045 By = 0.293 |Ap = 0.m>6 By = 0,m>5

Ao= 1.016 Bg =-0.006

A3 = 0,032

AZ3=~0.202

Ay, =-0.002
E v=6.282 p=0.l445 0 v=6.000 w=-2.832 |E v=6.055 u=-3.380
Ay =-0.411 By = 0.688 |A) = 0.268 By = 0.103 Ay = 1.056 By = 0.028
A; = 0.688 B3 =0.629 |A3 = 0.652 B, = 0.284 [A7 = 0.396 B, = 0.391
A"y=-0.189 Bg =-0.343 | A5 =-0.162 Bg =-0.057 [A_j= 1.256 B} = 0.7h45
Ap = 1.002 B7 = 0,026 Ay = 0,5 By = 0,6 JAy =-1.38k Bg =-0.163
A_p= 2,790 Bg = 0.001 A-5=-0.683
A3 =-0.347 Ay = 0.303
A_3=-0.037 AZ5= 0.063
Ay = 0.0k Ay "=-0.008
A5 = 0.001 A_)= 0.001
0 v=6.000 u=-9.11k |E v=6.005 p=-9.160 [0 v=6.000 u=-16.783
Ap = 1.813 B, = 0,015 [Ap = 1.781. By = 0.069 [Ay= 11.141 B, = 0.002
Ay =-0,780 By = 0.07k |A) = b, b62 B3 = 0.199 jAz= -3.9T3 By = 0.016
Ag = 0.082 Bg = 0.235 |A3=-3.923 Bg = 0.808 [A;= 0.438 Bg = 0.155
Ap = 0,m6 By = 0,m>5 | Ay =-2.850 B7 =-0.072 |A-= O,mw5 By = 0,m>6

A_p= 1.186 Bg =-0.003

Ay = 0.439

A_3=-0.085

A),"=-0.009

A_y=-0.001
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Teble 2 ~ (continued)

E v=6.000 u=-16.783

A, =40,690 By = 0.003

Ay==32.045 B, = 0.015

A_y=-20297 B), = 0.092
=10.063 Bg = 0.890

A_p= 3.92

Ay =-1.139

AZ3=-0.22%

Ay = 0.018

A_)=-0.003

Ag = 0.001

51

E v=7.500 u=26.597 [0 v=7.000 u=23.075 |E v=7.500 u=16.820
Ag = 0.00T By=-55.346 [A3 = 0.004 B,= 14.115 ! Ay = 0.124 By= 13.37h
Ay = 0.00k  By=-75.696 |A5 = 0.023 B3=- 6.380 | A; = 0.035 By=-17.621
A_y= 0.002 By= 2L, 784 A7 = 0.12h Bz= 1.26L | A_;= 0.036 Bz= 5.898
Ay = 0.00k Bg=- 3.603 |A) = 0,m>7 Br=- 0.0k2 | A, = 0.012 By=- 0.661
Ag = 0.088 Bg= 0.167 B= 0,7 |Ap= 0.154 Bg= 0.010
A} = 0.886 By 0.002 Ag = 0.007

AZ5= 0.700

A)"=-0.003

A__)4=-0.062

A_S=-0.003

AL "= 0,m>h

Ceaea
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Table 2 - (continued)

0 v=T.000 u=14.000 [E v=T.492 u=8.695 0 v=T7.000 u=%.kbk
Ay = 0.015 By = 3.31h | Ay =-2.035 B, = 2,647 |A; = 0.018 B, = 0.338
Ay = 0.059 Bl =-1.501 | A =-0.T59 B, = 3.500 |A3 = C.0TT B3 = O.THT
Ag = 0.191 Bg = 0.191 A_1=-l.136 Bh =-6.936 | A; = 0.208 By =-0.37h
bp= 0,6 By =0,m6|A"=1.665 Bg = 1.917 |A7 =-0.0k2 B7 = 0.041

A_p=-0.660 Bg =-0.127 (A, = O0,wT B = 0,m>7

Az'= L.368 B,,=-0.002

A_3= 0.1453

Ay =-0.865

A_)=-0.029

A_5=-0.001
E v=T.363 u=2.660 0 v=T.000 u=0.000 E v=7.157 u=-1.500
Ag = 0.343 By = 0.970 | A, = 0.221 B, = 0.221 {A, =-1.T51 Bj =-0.082
A) = 1,527 By = 0.64k | A = 0.389 By =0.389 {4, = 0.852 B, = 0.6kk
A_7=-0.358 Bg =-G.736 |[Ag =-0.097 B =-0.097 |A7,=-0.615 B) = 0.745
Ay = 0.758 By = 0.123 f Ay = O,m>6 By = 0,m>6 |Ay"= 0.936 Bg =-0.329
A_p=-0.578 By =-0.002 A= 2.628 Bg = 0.021
£y =-1,02} Ag=-0.52T7 B, 0.001
AZy= 0.199 A_3=-0.59k
Ay"= 0.1k0 Ay™= 0.051
A_)=-0.009 A_)= 0.017
A5 = 0.001 Ag = 0.001

Als= 0.001

0 v=7.000 u=-6.54l E v=T7.020 y=-~6.660 0 v=T7.000 p=-14.000
Ay = 0.338 By = 0.018 |Ag =-0.50k B; =-0.086 jA> = 3.31h Bp = 0.015
A3 = 0.747 By = 0.077 | A; =-0.19k By = 0.378 |A) =-1.591 By = 0.039
A5 =-0.37h By = 0.208 | A”.=-0.547 By = 0.890 |As = 0.191 B¢ = C.191
A7 = 0.041 By =-0.0k2 | A;"= 2,708 B; =-0.183 |A, = O,m>6 B = 0,m6
Ap = 0,m7 By = 0,m>7 [AZy= 0.4k2

A4 =-0.903

AZ4=-0.072

Ay"= 0.067

A_j= 0.001

As = 0.001
L
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Table 2 - {continued)

E v=7.000 u=-14,010 |0 w=7.000 u=-23.075 |[E v=T7.000 u=-23.075
Ag = 1.580 By = 0.075 |4, =1k.115 B, = 0.00k4 A, =51.657 B, = 0.003
Ay = 5.199 B, = 0.0kk A3 =-6.380 Bé = 0.023 Al=-h1.656 By = 0.014
A_1=-3.923 B}, = 0.175 |Ag = 1.26k B7 = 0.12h A ,=-28.427 Bz = 0.090
Ap =-4.075 Bg = 0.778 |A7 =-0.0k2 By = O,m>T |A,"=15.419 B7 = 0.894

A_o= 1.556 Bg =-0.069 [Ap = 0,m>T A o= 5.990

A3 = 0.905 B,,=-0.003 Aq =-2.4L6

AZ2=-0.192 AZ2=-0.670

A), =~0.05k4 A) = 0.121

A_j= 0.003 A_y= 0.010

A5 =-0.001 Ag = 0.002

E v=8.500 u=3L4.389 0 v=8.000 u=30.367 E v=8.500 u=23.191

A_y= 0.002 By =4k.092 (A, = 0.002 B; =33.1k2 |Aj = 0.391 B; =15.87h
A_p= 0.013 By=-62.390 [Ag = 0.011 B3=-15.59L [A; = 0.101 B3=-22.791
A_3= 0.087 B) =23.282 |Ag = 0.116 B = 3.291 {A_y= 0.109 Bg = 9.335
A_j= 0.898 Bg =-4.316 |Ap = 0,m>8 B =-0.200 [Ay = 0.030 By =-1.k92
Ap =0,m<-k Bg = 0.336 B, = 0,m>T [A_,= 0.039 Bg = 0.072
By o=--0.00k A3 = 0.134 Bj,= 0.001

A_3= 0.022

Ay = 0.632

A_)=-0.008

Ac =-0.056

Az =-0.002
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Table 2 - {continued)

5h

0 v=8.000 u=19.876 |E v=8.497 u=13.590 |0 v=8.000 ,=10.949
—
Ay = 0.002 By = 4,81k 1Ay =-5.50k By =-2.223 | A, = 0.017 By = 0.705
A3 = 0.012 B) =-2.999 |A) =-1.931 B, =-3.223 | A) = 0.059 B, = 1.233
A5 = 0.049 By = 0.678 |A_;=-2.0kk B) = 9.701 | A¢ = 0.165 Bg =-0.726
A7 - ‘2 Bg =-0.037 [Ay =~1.042 B¢ =-3.670 | Ag =-0,032 By = 0.092
Ap = O,m>7 By = 0,m>8 |A_»= 3.634 Bg = 0.428 | A = O,m>8 B = 0,m>7
Ay =-0.616 B,,=-0.007
AZ5=10.20k
A= 0.k11
A_y=-1.995
AS =.0.026
Ag =~0.001
E v=8.463 u=5.885 0 v=8.000 p=3.kk1 E v=8.275 1=0.535
Ay = 0.378 By =1.95T |A) = 0.048 B, = 0.251 | A) = 2.827 B,=-26.490
Ay = 0.170 B3 = 1.051 jA3 = 0.163 B) = 0.386 1Ay = 0.573 3B, =23.183
A_y= 0.764 Bg =-2.712 |AC = 0.267 B, =-0.206 A ;=-1.26T B, =17.98h
Ay =-0.127 By = 0.753 |A7 =-0.065 Bg = 0.023 |A, = 0.221 Bg=-16.021
A_p= 0.400 Bg =-0.049 |A = O,m>7 B = 0,m>8 |A_;=-1.k79 Bg = 2.370
A3 =-0.224 B3.=-0.001 A3"=~0.776 B, =-0.025
AZ2=-0.503 AZ3= 0.815 Bj,=-0.001
Ay "= 9.076 Ay7= 0.177
A_y= 0.070 A_y=-0.083
Ag =-0.00k Ag =-0.006
A 5=-0.001
0 v=8.000 y=-3.hk1 E v=8.073 u=-4.170 0 v=8.000 y=-10.949
Ap = 0.251 By = 0.0k8 {A, = 0.245 B; =-0.660 |4, = 0.705 B, = 0.017
A) = 0.386 B3 = 0.163 |A; =-0.005 2, = 0.85h Ay =1.233 B =0.059
Ag =-0.206 Bg = 0.267 |A ;= 0.071 B = 1.25h |A; =-0.726 By = 0.165
Ag = 0,023 By =-0.065 |A, =-0.004 By =-0.476 |A; = 0.092 By =-0.032
Ap = O,m>8 By = O,m>T |A 5= 1.01k Bg = 0.027 {A, = O,m>7 By = O,m>8
A3 = 0.004 Bj;= 0.001
A_3=—0o352
A),"=-0.001
A—h= 0.027




K\

55
Table 2 - (continued)
E v=8.005 p=-11.015 |0 v=8.000 u=-19.876 |E v=8.000 wn=-19.87¢
Ap = 0.136 By =-0.312 |A, = 4.624 B, = 0.002 | Ay = 0.847 B, = 0.127
Ay = 0.063 By =-0.230 |A) =-2.999 B3 = 0.012 A, = 4, 422 33 = 0.037
A_y= 0.1k6 By = 0.491 |Ag = 0.678 B = 0.049 A_l=—2.l83 BS = 0.161
Ap'= 1.306 Bg = 1.312 |Ag =-0.037 B = 0.162 &, =-}4.015 B7 = 0.74k
A_5=-0.163 Bg =-0.260 |Ap = 0,m>8 B, = 0,m>7 |A 5= 1.061 By =-0.066
Ag =- .601 Aqy'= 1.163 B},=-0.003
A_3= .039 Ah3=—0.l87
Ay, = .078 Ay =-0.120
A_y=-0.002 A_)= 0.01G
Ag =-0.001 Ag = 0.002
0 v=8.000 p=-30.367 |E v=8.000 u=-30.367
Ay =33.142 B = 0.002 AO =42,222 52 = 0.002
A3=-15.59h B¢ = 0.011 Al=-3h.393 3, = 0.013
Ag = 3.291 Bg = 0.116 A;fheh.936 Bg = 0.088
A7 =-0.200 B = 0,m>8 A, =14.399 . = 0.896
Ay = 0,m>7 AZ,= T.316
A3 R .908
A_3=- .982
Ay = 0.2l
A= 0.043
Ag =-0.003
Als= 0.001
0 v=9.000 u=38.660 0 v=9.000 u=26.751 0 v=9.000 u=16.413
A5 = 0.001 Bl=-ll.517 A, =0.002 B, =10.015 Al = 0.003 Bl = 1.021
A7 = 0.010 By = 6.208 Aj, = 0.010 B) =-6.926 A3 = 0.01k Bg = 1.612
Ag = 0.103 B5 =-1.776 Ag = 0.041 Bg = 1.685 AS = 0.047 BS =-1.5405
A, = 0,m>9 B7 = 0.247 |Ag = 0.1k40 Bg =-0.133 | A7 = 0.137 37 = 0.346
Bg = 0.116 {A; = 0,m>8 B, = O0,m>8 Ay =-0.027 By =-0.028
B, = 0,m>Q AL = 0,m>9 B =0,m9
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0 v=2.000 u=T7.640 0 v=9.000 u=0.000 0 v=9.000 y=-7.640
A, = 0.048 B, = 0.503 | A = 0.055 B, = 0.055 {4, = 0.503 B, = 0.048
Ay = 0.123 Bj = 0.566 [ A3 = 0.172 By = 0.172 |A) = 0.568 B, = 0.123
Ag = 0.202 B =-0.375 AS = 0.2 BS = 0.2 A6 =-0.375 B¢ = 0.202
Ag =-0.048 Bg = 0.048 A7 =-0.129 B =-0.129 [Ag = 0.048 B, =-0.048
A, =0,m8 B = 0,m8 Ag = .01k By = 0.01k A = O,m>8 B_ = 0,m>8

Ay = 0,m9 B = 0,m9
0 v=9.000 =-16.413 |0 =9.000 p=-26.751 |0 v=9.000 y=-38.660
4y = 1.021 B; = 0.003 | Ay =10.015 B, = 0.002 Al=-ll.517 BS = ¢.001
A_,; = 1.612 By = 0.01k | Ay =-6.916 B), = 0.010 Az = 6.278 By = 0.010
L =-1.405 B,). = 0.04T Ag = 1.685 B¢ = 0.041 AS =-1.776 39 = 0.103
a7 = 0.346 B7 = 0.137 | Ag =-0.133 Bg = 0.140 1\7 = 0.247 B’ = 0,m>9
Aq =-0.028 39 =-0.027 |A_ = O,m>8 B = 0,m>8 149 = 0.116
Ay = 0,m9 By = 0,m>9 n A = 0,m9

E v=9.000 p=-38.660

Ay =30.271 Bg = 0.002

Al=-2h.690 By = 0.013

A_;=-18.818 B = 0.087

A, =11.362 By = 0.898

A o= 6.329 B = 0,m>)

A3 =-2.757

A_3=—1.08)4

Ay = 0.321

A_)= 0.079

Ag =-0.013

A 5=-—0 .001
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Tgble 4 -

Neumann Eigenfunction Coefficients

E v=0.000 u=0.000
Ap = 1.000 B, = 1.000
A, = 0,m>0 B = 0,m>0
E v=1.000 u=0.500 0 v=0.81k u=-0.19% |E v=1.0600 p=-0.500
A; = 1.000 By = 1.h1k jAj =-1.473 By = 0.964°| A = 1. hlh B; = 1.000
Ap = O,m>1 By = 0,m>0 | Ay = 0.214 B3 = 0.010 {A) = 0,m>0 B = 0,m1
A= 0.030 Bg = 0.001
As = 0.007
A_p= 0.002
Az = 0.001
E v=2.000 u=1.732 0 v=L.595 u=0.795 E v=2.000 y=0.000
Ag = 0.134 By = 1.866 [Ag = 0.174 By = 1.160 {A; = 1.h1h By = 1.1k
Ap = 0.866 By =-0.866 |Ay = 0.689 B3 =-0.048 |A = ,m>l B, = 0,m>1
Ay = 0,m>2 By = 0,m>2 |A_1=-0.026 B =-0.003
Ap =-0.005
A_2=-0.001
0 v=1.955 u=-1.552 |E v=2.000 p=-1.732
AO =-1.360 B, = 0.496| 45 = 1.866 By = 0.13k4
Ay = 0.568 B) = 0.002 | A, =-0.866 B, = 0.866
A_y= 0.179 Ap = 0,m>2 By = 0,m>2
A> =-0.016
A_p= 0,004
A3z =-0.001
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Table & - (continued)
1z v=3,000 u=3.950 0 v=2.520 u=2.625 E v=3.000 1=0.950
A; =0.138 B, = 3.856| A, =-0.060 B, = 1.601 |Ay = 0.389 B; = 1.304
Az = 0.862 By =-2.hk2} A; =-0.022 B3 =-0.193 }A, = 1.025 By =-0.36k
Ay = 0,m>2 B = 0,m>2| A_3=-0.397 Bg =-0.00k A, = 0,m2 B = 0,m>3
. m
A2 = 0-033
A_,= 0.001
0 v=2.803 u=-0.350 E v=3.000 u=-0.950 0 v=2.990 u=-3.890
Ay = 0.34% = 0,583 Al = 1.36k BO = 0.389 AO =-1.720 B, = 0.032
A; = 0.7i8 B), =-0.038 A3 =-0.364 32 = 1.025 |A) = 1.025 B3 = 0.322
A_y=-0.180 By =-0.002 AL = 0,3 B = 0,m2 |A )= 0.429
Ay =-0.091 =-0.10L
A_»= 0.003 A_,=-0.011
A3 =-0.003 A3 =-0.002
A _3=-0.001
E v=3,000 u=-3.950
o) = 3-856 Bl = 00138
Ay =-2.4k2 B3 = 0.862
A.m = 0,m>2 Bm = 0,3
E v=b4.,000 u=7.211 0 v=3.505 u=5.430 E v=h.000 p=2.646
Ag = 0.019 By = T.246 |Aq = 0.013 By = 2.505 [A) = 0.479 B; = 2.350
Ao = 0.106 32 =-7.120 | Ay = 0.035 B3 =-0.524 A3 = 0.935 B3 =-0.936
Ay = 0.875 By = 0.A7h4 [A_;= 0.005 Bg = 0.012 |Ap = 0,m>3 3By = 0,m>3
Ay = O,m>h By = 0,m>b }A,"= 0,275 B7 = 0.001
A_p=-0.,001




1 T A o v e i

PR LA NG L os N 4
NS PO T W P
e e oot S ki A A AP A, e N 500 O i

Yon's kb ws

Table 4 - (continued)
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p=1.260 v=4.000 p=0.000 v=3.940 u=-2.315
Bp = C.T18 |A, = 0.375 By = 0.375 [Ag = 0.365 By = 9.07T1
B), =~0.106 A = 0.833 32 = 0.833 Al = 0,71k B3 = 0.363
Bg =~0.002 | A) =-0.208 By, =-0.208 |[AZ,=-0.L09 B5 =-0.030
Ap = 0,m>k B = 0,m>k A2 =~0.211 B, =-0.001
A%5= 0.0k T
Ag = 0.005
AZ3= 0.001
p=-2.6k46 v=3.998 u=~7.195 E v=4,000 p=-7.211
B, = 0.479 =-2,639 32 = 0.026 AO = 7.246 By = 0.019
A5 =-0.936 B3 = 0.935 = 1.836 Bh = 0.237 |A; =-T.120 B2 = 0,106
Ay, = 0,m>3 B = 0,m>3 JAT,= 0.927 Ay = 0.87h B} = 0.875
=-0,327 A, = 0,m>b B, = 0,m>h
5=~C.0T5
= 0.C07
3==0.001
p=11.L4ok v=4.,500 u=9,218 T v=5.000 u=5.363
Ay By =16.709 =-0.003 By = 4.281 |Ay = 0.106 B, = 3.133
A3 B,=~17.796 =-0.001 By =-1.250 |A, = 0.363 By =-2.468
Ag B, = 2.501 =-0.023 35 = 0.092 A, = 0.946 B; = 0.335
Ay B, = 0,m>h =-0.210 B7 = 0.002 = 0,m>h B = 0,m>5

>
3
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Table 4 - (continued)

0 v=k,530 u=3.680 E v=5.000 u=1.369 0 v=b,795 w=-0.495
Ag = 0.028 By = 0.969 | A, = 0.471 By = C.70k |A; =-0.295 B, = 0.112
Ay = 0.086 B) =-0.245 | A3 = 0.685 B, = 1.151 {A; =-0.1k1 B, = 0.420
A_y= 0.015 Bg = 0.006 | Ay =-0.156 B, =-0.kk2 A_,=-0.159 By =-0.073
Ay = 0.303 A = 0w>5 By = 0,mk |A"= 0.157 B =-0.001
A_o=-0.006 AZ,= 0.125
Ay =-0.028 A3 =-0.015
Aj, =-0.001 A_5=-0.002
E v=5.000 u=~1,369 |0 v=h.984 u=-5,230 |E v=5.000 p=-5.363
Ag = 0.704 By = 0471 [A, = 0.406 B, = 0.059 1A, = 3.133 B = 0.106
Ap = 1.131 By = 0.685 [A, = 6.867 B) = 0.256 |Ay =-2.168 B, = 0.363
Ay =-0.hk2 By =-0.156 | A_,=-0.702 B¢ =-0.022 | A, = 0.335 Bj = 0.946
Ay, = 0,m>h B = 0,m>5 | A, =-0,409 By =-0.001 |A; = O,m>5 B = 0,m>k

hoo= 0.143

A3 = 0.035

A_5=-0.003

Ay"= 0.001

0 v=5,000 u=-11.491 }E v=5,000 p=-11.49k4

Ag =-b.535 B; = 0.003 |Aj =16.709 B, = 0.020
Ay = 3.b17 B3 = 0.020 |A,=-17,796 Bg = 0.096
A_;= 1.967 By = 0.188 A, = 2,501 B5 = 0,884
Ay"=-0.85k4 A, = 0,m>k B = G,m>5
A_p=-0.272
Ay = 0.057
AZ3= 0.005

A= 0.001
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Table 4 - (continued)

E v=6.000 u=16.784 0 v=5.500 u=1k.012 v=6,000 9.165
Ay = 0.003 Bo =35.528 Al = 0.003 Bl = 7.809 = 0.118 6.600
Ap = 0.015 Bp=-hh.652 | A; = 0.018 By =-2.8b5 = 0.32k -6.158
Ay = 0.092 By =11.067 Ay = 0.170 BS = 0.35h4 = 0.972 0.972
Ag = 0.890 B¢ =-0.943 | A = 0,m>3 By =-0.006 = 0,m>5 O,m>5
Ap = 0,m>6 B = o,m>6
0 v=5.507 wu=7.060 E v=6.000 »=3.507 v=5.627 u=1.692
Ag =-0.014 B, = 1.439 [Aj = 0.124 B, = 0.789 =-0.032 0.171
Ay =-0.005 B =-0.53h A, = 0.347 B, = 1.10k = 0,172 0.503
A_;=-0.055 B¢ = 0.0L42 Ay = 0.672 3), =-1.03k4 _1==0.017 -0.143
A, =-0.003 Bg = 0.001 | Ag =-0.142 Bg = 0.1k2 = 0.330 0.005
A_5=-0.223 A, = 0,m>6 By = C,m>6 = 0.015
A3 = 0.001 =-0.076
A_3= 0.020 -3=-0.002
A_j= 0.001
E v=6.000 u=0.000 0 v=5.927 u=-2 015 v=6.000 507
Ay = 0.88k B, = 0.884 AO =-0.301 B, = 0.099 = 0.7869 0.12%4
A3 = 0.795 B3 = 0.795 |A) =-0.115 B) = 0.282 = 1.10k4 0.347
Ag =-0.265 B; =-0.265 | A ;=-0.365 B, =-0.054 =-1.034 0.672
Ay = 0,m>5 B = 0,m>5 | A= 0.352 = 0.1k2 -0.1k42

AC,= 0.187 = 0,m>6 0,m>6
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0 v=5.997 u=-9.120 |E v=6.000 »=-9.165 0 v=6.000 p=-16.783
Ap = 0.552 By = 0.008 |A) = 6.600 B, = 0.118 JA, =-8.470 B, = 0.002
Al = 1.376 B3 = 0.0k5 |A; =-6.158 By = 0.32h |A " = 6.670 B, = 0.016
A_1-~L 217 Bs = 0.197 |A; = 0.972 B5 = 0,972 A_1= 4.225 Be = 0.155
o ==0.878 By =-0.01T [A7 = 0,m5 B = 0,m>5 =-2.095 B = 0,m6
= 0.367 Bg =-0.001 A_»=~0.820
A3 = 0,135 Az = 0,237
AZ3=~0.026 A_3= 0.0k7
A, =-0.003 Aj,"=-0.00k4
P_h= 0.001
E y=6.000 u=-16.78L
Ay =35.528 B, = 0.003
A,=-b}.652 B, = 0.015
An =11.067 B) = 0.092
Ag =-0.943 Bg = 0.890
A, = 0,m>6 B, = 0,m>6
E v=7.000 p=23.076 0 v=6.500 y=19.80k4 E y=7.000 ,=1h.01k
Ay = 0.003 B, =84.943 |A, = 0.001 By =1}t ,855 Ay = 0.022 =10.906
A3 = 0.014 Bem_110.135 Ay = 0.001 B3y =-6.31T | A5 = 0.089 B3-—13 548
Ag = 0.090 B) =29.321 |A, = 0.002 B5 = 1,102 Ah = 0.310 5 = 1,005
A7 = 0,69k B» =-2.715 |A3 = 0.012 Bg ==0.058 Az = 0.993 BS =-0.363
Ap = 0,m>T = 0,m>6 |4 = 0.12h By =-0.001 { A = O,m>6 B = O.m>T
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I Table 4 - (continued)
3
T 0 v=6.501 u=11.446 | E v=T7.000 »=6.708 ¢ v=6.540 p=k.675
Ag = 0.341 Bp = 2.299| A; = 0.143 By = 1.693 | A; = 0.037 B, = 0.266
] By = 0.0i0 By =-1.125| Ay = 0.296 B, = 1.763 A, = 0.023 B, = 0.646
= A_y= 0.013 Bg = 0.15h Ag = 0.70L B), =-2 446 A_1=-0.100 B5 =-0.27Tk
. Ay'= 0.0k3 Bg =-0.003] A7 =-0.143 B, = 0.k03 f A "= 0,013 By = 0.023
ASp= 0.007 Al = 0,w7 B = 0,m6 | A%,=-0.23}
Ay = 0.187 A3 =-0.009
: AZ4=-0.003 A_3= 0.0k
: A),"=-0.017 A = 0.001
3 Ag =-0.001
E v=7.000 u=l.770 0 v=6.792 u=-0.630 |E v=7,000 u=-1.770
]
L, " Ag = 0.283 B, = 0.852] Aj =-1.492 B, = 0,148 | A = 0.852 B, = 0.283
: Ay = 0.638 B3 = 0.611 A= 1.2ks B = 0.315 As = 0.611 B~ = 0.638
Ay = 0.692 By =-0.534| A7,=-0.589 B =-0.099 Ag =-0.53h Bﬁ = 0.692
- hg =-0.200 By = 0.071| A,"= 1.520 Bg = 0.00k Az = 0.071 Bg =-0.200
Ap=0,m6 B =0,mT! A~ 1.486 Ap = 0,m>7 B = 0,m>6
A3 =-0.703
; AZ3=-0.27h
: AL = 0.051
: A_h= 0.003
- Ag = 0.001
0 v=6.980 y=-6.500 | % v=7.000 u=-6.708 |0 v=7.000 u=-1L.00:
Ag =-0.113 B, =-0.056 | A, = 1.693 B, = 0.143 A, =1.176 B, = 0.008
A; =-0.043 By = 0.082| A, = 1.763 By = 0.296 | A = 3.852 B) = 0.036
AZy=-0.122 Bg = 0.223 | A) =-2.446 BS = 0.70L A_l=-2.930 Bg = 0.160
Ay'=0.556 B =-0.0kk | Ao = 0.403 By =-0.1h3 | A "=-3.022 Bg =-0,01b
A_»= 0.097 Ap = 0,m>6 By = 0,m>T |A7,= 1,163 B, =-0.001
Ay =-0.183 A3"= 0.672
) A_5=-0.016 A_5=-0.143
Ay”= 0.013 A, "=-0.0k0
AZ)= 0.002
As =-0.001

+
\J
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E v=T7.000 p=-1b.,01k | 0 v=7.000 w=-23.075 | E v=7.000 u=-23.076
A, =10.906 B, = 0.022 A0=-17.2hh By = 0.004 | A =8k.9h3 B, = 0.003
A3=-13.5h8 B, = 0.089 Al =13.906 BS = 0.023 | A3=-110.135 By = 0.014
A5 = 4.005 B = 0.310| A~.= 9.490 B? = 0.12k A, =29.321 B[ = 0.090
A7 =-0.363 B} = 0.993 A;l=-5.lh7 T A¢ =-2.715 B? = 0.894
Ap = 0,7 B = 0,m6| A% =-2.333 A =06 B =0,m7
i Az°= 0.816 m

AZ.= 0.22h

A),”=-0.040

A_),=-0.003

kg =-0.001
E v=8.000 u=30.368 |0 v=7.500 u=26.597 |E v=8.000 u=19.880
Ay = 0.002 B, =89.332| A, = 0.001 B =28.305| A, = 0.025 B, =2),157
A = 0.013 B,=-126.269 A, = 0.001 B;=-13.473| A_ = 0.080 B =-32.109
Ag = 0.088 By =hh.337| A; = 0.002 By = 2.988| A3 = 0.303 B} =10.373
Ag = 0.896 Bg =-T.370| AS = 0.012 By =-0.266 | A7 = 1.006 B) =-1.008
Ay = 0,m8 By = 0.970( A = 0.12h By = 0.00k A; = 0,m7 Bl = 0,m7

By = 0,m>8[ A = 0,m>l n

0 v=7.500 u=16.816 E v=8.000 p=11.036 0 v=7.510 u=8.625
A0 =-0.025 B, = 3.889 AO = 0.030 BO = 2,464 AO =.0,084 Bl = 0.426
Ay =-0.007 B} =-2.329| A, = 0.101 B, = 1,961 | A; =-0.031 By = 0.910
AZy=-0.007 B¢ = 0.458 | Ay = 0.276" B, ==l 877 A_l=~o.oh7 B =-0.537
A, '=-0.003 Bg =-0.025| A = 0.739 By = 1.507 | A;"= 0.063 B7 = 0.077
A_,=-0.032 Ay =-0.146€ Bg =-0.145 A_2=-0.028 59 =-0.,001
A37=-0.001 Ap = 0,8 B = 0,m>8 | A;"= 0.16k
A} = 0.001 AZg= 0.019
A_y= 0.013 Ay, =-0.033
A_g= 0.001 A_)=-0.001
A = 0,m>bk
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Table 4 - (continued)
E v=8.000 u=L.33k 0 v=7.632 u=2.,095 v=8.000 u=0.000
Ay = 0.369 B, = 1.622 Ay = 2.22h 32 = 0.213 = 0.273 BO = 0.273
A3 = 0.530 B3 = 0.726 Al =-0,209 B) = 0.363 = 0.562 B, = 0.562
Ag = 0.696 Br =-1.115|A 1=--o.188 Be =-0.).66 = 0.469 B), = 0.469
Az =-0.181 35 = 0.181 | A_"=-0.098 B, = 0.015 =-0,348 B, =-0.34§
T 0,m7 B! = 0 >T7 A2 =-0.277 8 = 0.0L4k 36 = 0.0kLY4
=0 LIRS D Ay = 0, 8.0,
3 = 0. = 0,m8 B, = 0,m>8
A .= 0.109
Ay, "=-0.026
A_=~0.007
0 v=T7.923 up=-3.685 & v=8,000 u=-k,33k v=7.995 u=-10.905
Ag =-0.035 By =-0.330 | A; = 1.622 B, = 0.369 = 0.067 B, =-0.040
A} = 0.003 By = 0.157 Ag = 0.726 33 = 0.530 = 0.031 B = 0.066
A_,=-0.010 B = 0.303 A5 =-1.115 B5 = 0.696 = 0.072 B, = 0.184
A,"= 0.002 BT =-0.100 A7 = 0.181 B7 =-0.181 = 0.654 38 =-0.036
A 5=-0.370 By = 0.005 | A = 0,m>T B = 0,m7 =-0.080
A5 =-0.002 =-0.300
A”.= 0.120 = 0.019
A_j=-0.008 = 0.039
=-0.001
=~0.001
E v=8.000 p=-11.036 |0 v=8.000 u=-19.877 |E .000 p=-~19.880
Ay = 2,464 By = 0.030 Ay ==1.6Th B, = 0.021 |A 157 B, = 0.025
Ap = 1.961 B, = 0.10] A =-8.728 B3 = 0.006 | A .109 B. = 0.080
Ay ==b.877 By = 0.276 [A’ = 4.318 B3 = 0.028 | .373 B3 = 0.303
Ag = 1.507 Bg = 0.739 |AZ'= 7.926 B? = 0.133 .008 B2 = 1.006
Ag =-0,145 Bg =-0,146 | A 2=-2.097 BZ =-0.012 o,m>T B7 = 0,m>7
Ay = 0m>8 B = 0,m8 | A;°=-2.297 BJ =-0.001 m
A_3= 0. 379
Ah = 0.230
A_,=-0.019
Asg =-0.00k4
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Table 4 ~ (continued)
¢ v=8.000 u=-30.368 |E v=8.000 n=-30.368
Ay=-38.665 B) = 0.002 | A, =89.332 B, = 0.002
A, =31.k92 B, = 0.011 | A =-126.269 B/ = 0.013
A1,=22.833 By = 0.116 | A2 =4h.337 B} = 0.083
A,=-13.18k Ag ==7.370 Bg = 0.896
A_,=-6.699 Ag = 0.970 By = 0,m8
A3 = 2.663 Am = 0,m>8
AZ5= 0.899
A)"=-0.221
A-)-l=-0'039
Ag'= 0.003
E v=9,000 p=38.660 |0 v=8.500 u=34.389 |E v=9.000 u=26.752
Ag = 0.002 B,=833.672 {A_,=-0.002 B, =h8.433 A, = 0.00k =50.366
Ag = 0.013 B=-197.523 |A_5=-0.011 B3=-25.087 | AJ = 0.019 B3=-77.957
A7 = 0.087 B)=438.450 |A )=-0.109 B; = 6.664 | A/ = 0.075 Bg =34.70L
Ag = 0.898 B=-T6.67€ | A, "=0,me<-b By =-0.831 | Ag = 0.299 B; =-6.362
Ay = 0,m>9 Bg = 3.490 Bg = 0.034 | Ag = 1.016 By = 0.2k9
Bm = 0,m>8 Ay = 0,m>8 B, = 0o,m>9
0 v=8.500 1=23.190 |E v=9.000 y=16.438 |0 v=8,503 un=13.570
Ay = 0.087 B, = 6.709 |A) = 0.033 B, = 5.802 |A, = 0.087 B, = 0.721
3 = 0.022 By =-h.67h 1Az = 0.084 B, = 3.126 1A} = 0,030 By = L.L7h
A_y= 0,024 Bg = 1,195 |A5 = 0.268 B)=-11.2h5 A ;= 0.032 By =-1.1h2
Ap'= 0.007 Bg =-0.i13 |A; = 0.765 By = L.1k7 |A,"= 0.016 B, = 0.241
A_p= 0.009 Byy= 0.002 |Ag =-0.149 By =-0.417 |A7,=-0.056 By =-0.01k
Ay=0.030 Ay = 0,9 By = 0,m8 |AS"= 0.010
AZ3= 0.005 AZ3=-0.15T
Ay = 0.1h2 A)"=-0.031
A_)=-0.002 Ady= 0.031
Ag =-0.013
Az =-0.001
Ay =0,m<~h

L
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Teble 4 - (continued)

T1

E v=9.000 yu=8,00k 0 v=8.545 u=5.630 E v=9.000 n=2.158
Ap = 0.098 By = 1.936| A =-0.1L6 B, = 0.314 | A, = 0.365 Bg = 0.521
Ay = 0.265 B3 = 0.460| A) =-0.066 By = 0.L46} A7 = 0.440 By = 0.9k2
A, = 0.490 By =-2.027 | A_,=-0.522 B =-0.202 | A, = 0.442 By = 0.L46L
Ag = 0.TML B; = 0.689| A,"= 0.05 Bg = 0.043; A7 =-0.280 By =-0.607
Ag =-0.180 By =-0.059 | A_,=-0.270 B;,=-0.001 | Ay = 0.033 Bg = 0.093
Ap = 0,m8 B = 0,m9 A= 0.078 A, =09 B =0,m8

A= 0 358

A)~=-0.028

A_)=-0.052

Ag = 0.001
0 v=8.787 u=-0.770 |[E v=9.000 u=-2.158 |0 v=8.980 n=-7.710
Ay =-0.211 By =10.313 | A; = 0.521 B, = 0.365 | A, =-0.291 B, =-0.269
A) =-0.0T5 By =~1,5k46 A, = 0.942 By = 0.440 | Ay =-0.060 By = 0.1L3
A_y= 0.046 B5 =-2.326 | A) = 0.46L B = 0.442 | A 1=-0.090 Bg = 0.275
Ay =-0.024 B, = 1.138 | As =-0.607 B; =-0.280 | A,'=-0.0k7 Bg =-0.092
A_,= 0.045 By =-0.111 Ap = 0.093 39 = 0.033 A_2=-o.3h6 B,,= 0.005
A3= 0,356 Bj;=-0.001 | A = 0,m8 B = 0,m9 |A;"= 0.06k
AZ3=-0.033 AZg= C.169
Ay, = 0.005 A)"=-0.016
A= 0.006 A_)=-0.022

Ag = 0.001

E v=9.000 p=-8.00k4 0 v=9.000 y=-16.420 [E v=9.000 p=-16.438
Ay = 1.936 By = 0.098 | Ay = 0,136 By =-0.099 | A, = 5.802 B, = 0.033
A3 = 0.460 B, = 0.265 |A; = 0,080 B; =-0.036 |A, = 3.126 B3 = 0.08k
As =-2.027 By = 0.h90 | A ;= 0.155 Bg = 0.060 A =-11.245 B_ = 0.268
A7 = 0,689 B¢ = 0.7h1 |A;= 0.718 B7 = 0.173 [A¢ = h.LWT B2 = 0.765
Ag =-0.059 Bg =-0.180 |A_,=-0.225 By =-0,03k [Ag =-0.h17 By =-0.149
Ap = 0,m>9 By = 0,m>8 |A3"=-0.426 Ap = 0,m>8 By = 0,m>9

AZ3= 0.073

Ay = 0.080

A.y=-0.078

Ag =-0.004
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Table 4 - (continued)
0 v=9.000 u=-26.751 |E v=9.000 u=-26.752 |0 v=9.000 wn=-38.660
Ay =- 0.218 B, = 0.017 | 4, =50.366 BO = 0.00k A0=-89.78h BS = 0.001
A, =-2.958 B, = 0.005 | A3=-TT.957 B2 = 0.019 Al =73.229 BT = 0.010
A= 0.548 36 = 0.024 Ag =34,704 Bh = 0.075 | AZ;=55.812 By = 0.103
Ay'= 2.979 Bg = 0.11k | A7 =-6.362 B¢ = 0.299 A2—-33 .698 B = 0,m9
A_,=-0.311 B,;=-0.010 A9 = 0.2h49 Bg = 1.0156 Aéf-ls 771
A."=-1.056 Ap=0,m9 B =0,m8|A; =8.177
3 m 3
AD= 0.071 AZ3= 3. 216
Ah = 0,154 Ah =-0,951
A_y=~0.006 A_=-0.236
As =-0.007 Ag = 0.037
A_5= 0.003
E v=9.000 u=-38.660
~833 672 By = 0.002
h-h38 50 Br = 0.087
Ag=-T6.676 By = 0.898
Ag= 3.490 B = 0,m>9

0,m>8

Amz
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Table 5 - Lowest Eigenvalues of the Even Dirichlet and 0dd

Neumann Problem for k2 = 0.1 and k% = 0.9

Even Dirichlet

k2 = 0.1

k'2 = 0.9 k2 = 0.9

m v

0.407

0.208 0.171

0.010

0dd. Neumann

k% = 0.1

k2 = 0.9 k% = 0.9

0.613

0,188 0.970

s S o N 4 S TS b e S B
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t‘ CHAPTER IV

b SOLUTION OF THE VECTOR WAVE EQUATION

In this chapter the electric field in a scurce~free region
containing a perfectly-conducting plane angular sector is determined.
The medium surrounding the plane angular sector is linear, isotropic,

end homogeneous. Thus E satisfies the equation

VxVxE-x2E=0 (k.1)

) with the boundary condition

nxE=0 (4.2)
on the surface of the plane angular sector and & radiation condition

as r + ®», The unit vector n is normal o the plane angular sector.

T T

Since n is not defined at the edges and tip of the plane angular

FAPEN g ata sy

sector, there are alzo conditions which must be satisfied there.

These will be discussed in Chapter VI.

Following the method described by Morse and Feshbach{15] define

the following three independent vector wave functions.

T=w (4.3)
ﬁé =V x ¥ R (4.4)
- 1 —
Ny ==VxVx¥%R (4.5)
K

Th
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where ¥, V1, and Vo are scalar wave functions and R = r r is & radius

vector. 8Since V ¢ E = 0, it is clear that cnly the lattier two can be

solutions of equation (4.1). Checking Mp and Ny in equation (4.2),

it is seen that V2 must satisfy the Neumann boundary condition and ¥;

the Dirichlet boundary condition. Thus ¥ and V2 are the complete sets

of scalar wave functions determined in Chapter III. Since the sets

Y1 and Vo are complete, the sets ﬁé and ﬁi are complete, and thus any

divergenceless vector can be expanded as a sum of these functions.
Performing the indicated curl operations in equations (L.l4) and

(4.5), the vecter wave functions can be written in component forms as

—

— Zy, , {xr) l
22 ‘

M = l1-x2 cos? 8 0 (o) (4.6)
(] .
o*2 |k2 sin€ 64%'2 sin? ¢ L_ o%2

5 - - k12 2. / a
MO |2 - k2 cos? 4 Oga(0) teys(4) 8

ﬁ- ( ) 2y (Kr) .

gy - V8 VAL — Oegy (0) gzl(¢) r (k.7)

(r zygy (kr))!
+ |1 - k2 cos? ¢ 0
Kr |k2 gin? 0 + k'2 5in2 ¢

gu(®)

'y 6+ [1-%2 cos2 6 0 (8 o 8
gll(¢) S | cos 821( ) (¢) 8

Se1

The subscript £ is an ordering index. It is an integer which

identifies each (vy, u,) eigenvalue pair, and is useful not only for

identification but as a summation index.
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zvz(nr) is & spherical Bessel function, its type depending on the
boundary condition on r. All primes indicate differentation with

respect to the independent variables r, €, and ¢.

I R T e R e

Note that(v=0, u=0) is an eigenvalue pair for the scalar wave

Pl ¢t

3 ) functions, but it is not for the vector wave functions. Since ﬁ;22

contains derivatives of the scalar functions and the scalar

eigenfunctions that correspond to (v=0, p=0) are constant,

ﬁga(v=0, u=0) vanishes.

It is also possible to define two other vertor wave functions,

;o M., » and N, ., These do not satisfy equation (4.2) so they are not
e €02

E acceptable as solutions of this problem. They are useful, however,

and will be used in the dyadic Green's function derived in the next

chapter. These functions are defined as follows:

_ Zygq (KT) ,
| W, = 2 [1 -k cos20 0] (0)  (4.8)
VL oXl EQ sin® 6 + k'2 sin@ ) o2

(0) & - [1-k2cos ¢ Og, (8) g, (¢) 8
o

]
31 %1
; _ ( ) Zygo (kT) (o) 2
, N = Vyotl) —————— r .
| &2 vgalveo — 9822(6) &Sm $) (4.9)
|
i (r 2y, (kr))!
+ 2 Il - k'2 cos? ¢

f kr [k2 sin2 6 + k'2 sin ¢

A ' "~ _ 2 2 ' a
0822(6) ¢822(¢) ¢ + |1 k= cos® 6 0822(6) ¢8£2(¢) 8] .
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These are related to ﬁé and N in the following manner:

02 eel
ﬁ = 1 v x ﬁ
891« erl (4.10)
. o=ivxi (4.11)
N ==-v=xM J1
822 % gzz
— l —
M, =—-9xN (k.12)
e
&2 ¢ €42
—-— l -—
N, . ==9VxM (4.13)
e
02.1 K gﬁl

All four of the vector wave functions defined by equations
(4.6), (4.7), (4.8), and {4.9) possess orthczonality properties on the
surface of a sphere. These will be discussed in the next chapter,
vhere they are used to find the dyadic Green's function. To facilitate
the investigation of orthogonality, the following auxiliary vector wave

functions are introduced at this point.

- |l - k2 cos2 6 1 "
m . = e, (8) ¢ (b.1k
681 [k2sin? 6 + k'2sin2 ¢ S0 821(¢) ¢ )

ll - k'2 cog? ¢

- - 0, (0) &1 () 8
2. 33
k2 sin2 6 + k'2 sin2 §  © ! otl
. 112 2
e I; - k'° cos® ¢ 1 -
rxmg = 9. (8) o (4) ¢ (4.15)
e e e .
o*l k2 5in2 g + k'2 sin2 ¢ o*1 ¥
t 2 2
1 - k© cos“ 8 A
' 0,1 (8) ¥, (6) 8
|k2 sin® o + k'2 sin? ¢ @ °
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-,

lng V&‘.l(vﬁlﬂ) 0821(6) ¢’821(¢) T (4.16)

The auxiliary vector wave functions m

’ Xm L
Se2 o2’ "Se2
similarly except that Neumann functions are uced instead of the

s 1

are defined

Dirichlet. These functions are related to the original vector wave

functions in the following manner.

M =2z kr) m, .7y
€02 vgp | ) Se2 (
' Zyeq (KT) (r zyp, (k) .  _
s = 2 S Ta,. + 21 (r x meu) (k.183
and similarly for M, and N, .
v oLl 822

For a more complete discussion of vector wave functions, see
Morse and Feshbach[15]. Vector wave functions are also discussed by

Stratton[16], Van Bledel[17], and Spence and Wells[18].

i
1
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CHAPTER V

DETERMINATION OF THE DYADIC GREEN'S FUNCTION

In this chapter, the dyadic Green's function is derived. The
derivation is given in some detail since the Green's function is
composed of previously unknown ° ector wave functions. In the

process, some properties of these vector wave functions are determined.

Introduction

In order to find the total field due to an arbitrary current J
in the vicinisy of the perfectly conducting plane angular sector, the

following set of equations must be solved.
VXVXE-kPE =« jupd (5.1}

nxE =0 (5.2)

on the plane angular sector, E must satisfy the radiation condition
as r + =, and as was mentioned in Chapter IV, there are also edge and
tip conditiong which must be satisfied.

The solution to this set of equations can be written

E (R) = juu fv? (R.R') - T (R') av (5.3)

+ L;[E'(ﬁw) xn -9 x ?:(ﬁu,ﬁ)] ds

70
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where R is the field point, R! is the source point, and v is a voiume
enclosing the source current J. The surface S is the plane anguler
sector. Crdinarily the surface integral is zero because of equation
(5.2). However, if the plane angular sector contains slots, nxE
will not vanish in the aperture of the slots. Thus the dyadic Green's
function obtained in this paper can be used not only to determine the
fields radiated by an arbitrary current distribution in the vieinity
of a plane angular sector, but also to determine the fields ra’iated
by slots in a plane angular sector. T (R,R') is the dyadic Green's

function. It must satisfy the following equationms.
VxvxT (RE) -«2T () =-~¢s (JBR) (5.4)
where ¢ is the unit dyadic.

axT (BE) =0 (5.5)
on the planc angular sector, ?:(ﬁgﬁ“) must satisfy a radiation
condition as r + », and ?:(ﬁ;ﬁ‘) must satisfy conditions at the edges
and tip.

In order to mske the derivation of ?:(ﬁ;ﬁ“) as simple as possible,
consider the following operation on equations (5.4) and (5.5). Let
an arbitrary unit vector, 5, be dot multiplied to the right of the

two equations. The result is

VxVxG (RR') -«2G (RE')=-as (|R-R']) (5.6)

nx6 (RR') =0 (5.7)

where

(5.8)

Qj
——
o
o
S
]

!
P
]
-
=]
S®
o>
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The Vector Green's function G (R,R') is the field due to a unit
vector point source a located at R'. Once G (R,R') is determined
it can be compared with equation (5.8) to determine ?:(§;§3).

It was determined in the last chapter that an arbitrary
divergenceless vector function could be represented as a sum over

the complete set of vector wave functions, M , and ﬁ; . Thuz

e
ge2 ee1

C (R,R') can be written

G (RE) =] [aq (B') Hyp (R + by (R') Ty (B)] (5.9)
q

where the subscript q replaces the ) subscript used previously, and
is meant to include all of these functions. The subscript 1 or 2

means, as before, that Dirichlet or Neumann functions, respectively,
are used in the vector wave functions. Equation (5.9) automatically
satisfies equation (5.7). The coefficients ag (R') end bq (R') will

be determined in order to satisfy equation (5.6).

Derivation

The singularity at R separates space into two regions. Let the
dividing surface S' be a sphere with radius r' except for an infinitesi-
mal cut around the quarter plane. (See Figure 7) The volume within S'
is called region I and that outside of S' is called region II. Also
define a surface S with the same shape as S§' but at a radius r. The
surface S is in region ITI. Within region I, the vector Green's
function has the boundary condition on r that the function must be
regular at r = 0. This implies that the Bessel functions used in the

vector wave functicns must be of the first kind. Thus in region I,
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& (BE) = ] [aq ®) K, B + 1, @) Ty (®)] (5.20)
> L 8q 92 q ql ’

vhere the superscript I meens that z, (xr) = J, {(kr). In regicn II,
the boundary condition on r is that the function must represent an
outward propagating wave for large r. This implies that the Bessel
functions must be Henkel functions of the second kind. Thus in
region II

=TI = oy =y 3L = =\ S1I (7

G" (R.E') = ] [ag (R') M, (R) + g (R') W) (R)] (5.11)

q
where the superscript II means that z, (kr) = hge) (xr).
In order to determine the unknown coefficients ag (R') and bq (R"),

consider the following equation, known as Creen's second identity for

vectors.

L(ﬁ'VxVxK-K°VxVx§)dv (5.12)
=] (Ax9xB-BxVxA) *nds
S

where ﬁ is a unit normal to the surface S which is pointing out of
the enclosed volume V. Let the surface be the same as the surface S
in Figure 7. Then V includes all of region I and part of region II.

Let

A =G (R,R") (5.13)

B=w_ (R) (5.1L)




8k
The volume integral is readily evaluated. From equations (5.6)

and (5.13),
VxVxA=VxVxG(RR')=x2C (R,R') - as (|B-R"|) (5.15)
From equations (Lk.1) and (5.1h4),
YxVxB=VxVxi (R =« (R (5.16)
p2 p2 )

Thus the left hand side of equation (5.12) is

f, Mgy () + @ T ®F) -y, ®) -+ 46 (|FF) (5.17)

ST RE) - PN, R av=-a - M, (R

The evaluation of the surface integral is not quite as simple.
Consider the following vector identities.

~

n -

=1

xVxB=nx

=|

AxVx3s. ﬁ

(5.182)

w|

9 x

— — ~

BxVxA-+*n

w]
<]
-]
|

(5.18b)

S

ﬁ'foxE=

X

Using these in the right hand side of equation (5.12), the following

is obtained.

A x T (RE) - v xF, (R) (5.19)

~ax M, (B) - 7xT (RED] as
On the part of S that encloses the quarter plane

Y

nxG (R,R') =0 (5.20)

and

= 28

x fily (R) = 0 (5.21)
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so that the integration is over the spvhere with radius r. On this
sphere

x G (RE) = r x 6 (RE) = Lyl [ag (R')(x x W (R)) (5.22)
+ by (B") (7 x § (R))]
A -—I — - a . —-I —
nx M, (R) =rxiy, (R) (5.23)
and with the help of equations (4.10) and (4.11)
vx M, (B) =« T, (R) (5.24)
Mp2 p2 )
SRR = v o 611 (R &
vxG (R,R') =9 x G (R,R*) (5.25)
. =y L = = 511 (5
= x ({1 fag (R') Ngp (R) + vy (R') My (R)]
Using these results, the surface integral is
ff Tleg ®)[7xMy ® - F, ®-7x¥, ® -7 @)
s g 3 92 2 P2 a2
(5.26)
= -~ -II -— . —I -— - - - TTI -, . ...II —
+bq (R') [r x Ngy (R) « Np (R) - r x ¥, (R) - My (R)]} as
=« ] [ag (B') Aq + by (R') Bq)
q
First consider Bq
e (15 «+ IR 7 (B - 2wl (B « 7l (B «
By js[r x Ngy (B) * Ny (R) - v x M, (R) - ¥y (R)] ds (5.27)
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Using the auxiliary vecter wave functions introduced in the previous

chapter, Bq can be written

qu-

(r hSil {kr))! (» va? (xkr))' 4+ g2 vag (kr) thl (Kr)]
ke

I
-

(5.28)

T M - .
Jy I (g Txmpe) pd4d o=t (r)Cq

where the weight function p is

o= nehg %2 sin® 6 + k'2 sin2 ¢ (5.29)
=5t = .
r 1 -k2 cos? 8 [1 - k'2 cos® ¢

Using the definitions of the auxiliary wave functions, Cq is

Cq = J§ [T 1042(6) ¢q2(4) epa(8) ea(4) (5.30)

- 0q1(0) 23,() 055(8) & 5(0)) ap a0

If the gl functions and p2 functions are both even »r both odd, the
integrand is odd with respect to ¢ and Cq = 0. Thus the gl functione
must be even and the p2 functions odd or vice versa if Cq is to be

nonzero. Separating the 6 and ¢ integrals Cq can be written

Cq = [T 2q1(¢) op(e) a0 7 0g1(0) epa(e) ae (5.31)

- i: 0g1(6) 0p0(0) d¢ L: 0q1(6) @fy(6) de
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Integrating the first 8 integral by parts, the followirg is obtained.

fg ;11(9) epz(e) as = eql(e) sz(e) |g (5.32)

- I3 9q1(9) 0p5(0) as

The end point contributions are zers because Oql(n) = 0, and either
0g1(8) or e,p(8) is odd so that the contribution at 8 = 0 is zero.

Combining terms, Cq can be written

Cq = = J§ 0q1(0) 02,(0) as l:£: (0q1(4) 015(¢) (5.33)

+ 805(9) 05(6)) d¢]

m
The term in the square brackets is just qu(¢) ¢p2(¢) . which is
zero because of the periodicity of the ¢(¢) functions. Thus Cq =0
and it follows that Bg = O for all q.

Now consider

By = [ FxWZ(R) T, (@) -Fxl, (M ¥ ®la  (5.30)

Again using the auxiliary vector wave functions and manipulsting the

dot and cross products, Aq can be written

(2)

hoy (er)(r dury (er))' = gy y (er)(r n2) (er))t

(5.35)

Kr

fs(5§2 ) 562) ds
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Using the definition of E} the surface integral can be written
) 1
00(8) ¢ 5(6) 035(0) ¢ 5(e)

'[s (;‘})2 ) qu) as = r [,
(he)2

opg(e) ¢§2(¢) 0q2(e) °&2(¢)
(h¢)2

+ ds (5.36)

where the metric coefficients have been used for compactness. In
order to evaluate equation (5.36) a slight digression is necessary.

Consider the following vector identity.

Vo (g T ¥gp) = U V2 Hn + T U, 0 VY, (5.37)

Integrate throughout a volume like region I in Figure 1, use Gauss'

2 = _ 2 s
theorem and V ¢q2 = -k qu to obtain

fswpg V¥go + nds = - k2 | Vg0 b Qv + L,v bt V¥ Ay (5.38)

Expanding the functions into component form, the left hand side can be

written
[ Yoo V ¥ *mds
= Rpa(r) Rya(r) [ 0p0(0) opp(0) 0,5(6) ¢ ,(4) ds (5.39)

where the contribution to the integral alcng the quarter plane is zero
and the surface S is now spherical. The surface integral is the

orthogonality relation for the Lame functions so it is zero unless

q = p, and the left hand side of equation (5.38) is zero unless

q = p. The first term on the right hand side of equation (5.38) can

be written
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2 . - i
-«= [ g2 b av = fr ()’s Voo Ypo ds) ar (5.40)
The reason the volume integral can be separated in this way is that
dv = hy dp (hg hy d9 d¢) = hy dr ds = dr ds (5.41)

The metric coefficient hy is not a function of 8 or ¢ so the surface
integral can be integrated independently of r. But the surface integral
is the crthogonality relationship again so it is zero unless q = p, and
thus the first term on the right hand side of equation (5.38) is zero
unless q = p. The conclusion to be drawn at this point is that the
gradient of the Lame functions possess an orthogonslity relationship

over a volume, i.e.,
[, V¥ 9¥padv=0 q#p (5.42)

Again using the condition on the metric coefficients, this can be
written

J'V‘f"pe'V‘!’qde=fr(fsV"’pe’v"’eds) dr (5.43)

q

For q # p, the volume integral is zero, independently of the radius
of the spherical volume. This implies that the surface integral must
be identicelly zero, and thus the gradient of the Lemé functions also

possese an orthogonality relationship on the surface of a sphere, i.e.,

[ (Ve =V lds=0 q#p (5.Lk)

Fxpanding the gradients in component form, this can be written
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¥

Jg (b + V¥y ) ds = Rio(r) R! o(r) [ 0p2(8) epa(6) 0go(e) bq0(8) ds

T X YT r AT

(s) ¢ (¢) o' (eWI q» (¢)

+ Rpo(r) Ryp(r) [ %2

(he)2
, 0.,(6) ¢1,(¢) 0 ,(8) &'  (¢)
P2 P e 92 ds (5.45)
| (hy)?
3
% Again the first term on the right hand side is the orthogonality
kj relationship for the Lamé functions. Thus it has been shown that for
] a#p,
0'(9)@()0'(e¢,\ ' '
| % ) 0(0) 2,181 0,(8) a,(4) 0 o(0) ]
® (hg)2 (ng)2 J
— l - -
= 3 f;(mpg * mgp) 43 =0 (5.56)

snd that the auxiliary vector wave functions EAQ are orthogonal on

the surface of a sphere. Thus in equation (5.35) Aq can be written

0 Q¥ 0P
. fa = 2) (2)
o (kr)(x 3y 2(Kr)) - 3y 2(Kr)(r h,, (Kr))'-l 5
j Ap = by
| KT
: (5.47)
(o) 20(0) 0.,,(8) ¢!,(¢)
L | ki Pe (BB 21 a5 gq=0p

hg hg




Noting thet

(2) Nt ]
tha (xr)(r Jsz (kr))* - vae (kr)(r h“pz (kr))

KY

1 2)
hsig (xr) jvp2 (kyr) - va2 (xr) h£p2 (xr)

-

J

‘ wr)2

and writing out thz metric coefficients, it is seen that

I“ I“ ll - k2 cos? 8

=3 o 2
= [ (e1o(6) 0.5(¢))

Il - k'2 cos? )

11 - x'2 cos? ¢
N (05(8) 43(e)2 | s a0
[i - k2 cos? ©

and thus

-

jx ﬁgg (R') « a
A

ap (R') =
P2

where Ap2 is the surface integral in equation (5.52)

Ap2 = - § 2 Ay

91

(5.48)

(5.49)

(5.50)

(5.51)

Repeating the above procedure starting with equation (5.12) and

— I - I _
letting B = W) (R) instead of M3 (R), bp (R') is determined to be

. (®) - a
by (F) = 2 Ind :

(5.52)
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where Apl has the same form as Apg, the only difference being that
Dirichlet functions are used instead or Newnann. Thus,

Il = =1 = -
M, (R) M, (R') * &
=II == q2 2
T RR) =5« ks (5.53)
q Aq2
.—.II - ....I =, . PS
N1 (R) Na (R*) « a
+
Comparing this with equation (5.8), it is seen that
_ Mo (F) M)
T (RR') =3« ] (5.54)
Q Aq2
I = =1 =,
Ng1 (R) Ny, (R') o
+ I®| > |R']
where, with a = 1 or 2,
- Il - k2 cos? 6 0
- ) !
Mo =] ) (00,(8) o (¢)) (5.55)
|1 - k'2 cos?
1 - k'2 cos2 ¢ 5
+ (040 (8) 0g,(¢))7| a6 a¢
1 - k2 cos? 8

To find T (R,k*) for |R| < |K'|, the same procedure could be repeated,
this time integrating throughout a volume external to the surface S,
and letting the surface S' be at R', where |R'| > |R], or the

symmetry property of Green's functions could be used. The result is
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,, _ g () WL (R
LR T (RR') =3« ] (5.56)
: Q Rg2

T 1
T ® gy (®)

, Bl < [R]

A point concerning the normalization constants is worthy of
note. It is shown in Appendix A that the Aqu occur in discussing
the properties of the two-dimensional Sturm-Liouville type Lame

operator. Using the notatio; in the Appendix

hga = < Yqas L¥qa > (5.5T)

- - But,

< Yag: LVYqe >
Qa qa _
3 i = Aq_a (5.58)
3 < Yqas P an >

Thus, if the normelization of the Lame functions had been chosen
such that

< Ygas P Yqa > =1 (5.59)

4 i.e., if the Lame functions had been orthonormalized, then

Ao =2 + 1) (5.60)

qo qo - Vqa (“qa

From the point of view of the applied mathematician, this would be an
ﬁt ’ acceptable normalization of the Lame functions. Tais is especially
true for the Lame polynomials. Much confusion is caused by the lack
g of a standard when reading the work of various authors. The same

problem exists with the Legendre polynomials. They are well defined,

*
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however they are not orthonormal. This is the reason for the rather
complicated normalization constant found in eigenfunction expansions
in spherical coordinates.

The normalization constants, Aqa’ are given in Table 6. In
order to orthonormalize the Lamé functions presented in Tables 1

through 4, it is necessary to multiply each 0 and ¢ function by

( dga )1/h

Aqa . These numbers are also given in Table 6.

9k




Table 6 - Normalization Constants

A: Dirichlet Problem

95

F2RA C¥ L v S e
<

1

s Ay (7\1/Al )l&

c 0.29 0.090 2.940 0.601
- 1.hk25 0.915 35.103 0.560
¢ 1,600 0.000 8.378 0.699
- 1.130 - 0.455 14,201 0.6k2
2,480 2.670 269.941 0.423
- 2,000 1,500 10,050 0.879
- 2.290 0.215 20.797 0.776
: 2.000 - 1.500 10.050 0.379
2.040 - 1.705 194,581 0.423
3.495 5.440 3073.608 0.267
3,000 3.873 19.175 0.889
3,410 1.535 67.639 0.687
3,000 0.000 5.741 1.202
3.145 - 0.825 37.245 0.769
. 3,000 - 3.873 19.175 0.889
3,010 - 3.9%0 1012,967 0.330
N 4,499 9.225 26302.376 0.175
» 4,000 7.190 48,982 0.799
" L. 470 3.790 370.670 0.507
; 1+, 000 2.190 6.276 1.336
, 4,280 0.335 39.904 0.867
3 4,000 - 2,190 6.276 1.336
g 4,050 - 2.575 153,114 0.605
7 4,000 - 7.190 48.982 0.799
3 L,005 - 7.205 L41648.,698 0.256
5,500 14,013 206778.639 0.115
5.000 11.489 157.321 0.661
1 5.490 7.110 2517.012 0.345
4 5.000 5,196 10. 424 1.302
: 5.499 2.110 136.722 0.715
- 5.000 0.000 4,265 1.629
3 5.150 - 1.170 62.106 0.845
- 5.000 - 5.196 10. Lol 1.302
5.015 - 5.335 970.112 0.420
5.000 -11.489 157.321 0.661
5.000 -11.493 73566.927 0.142




Table 6 - (continued)
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v M Ay (A/Ay)E
6.500 19.805 1614259.188 0.131
6.000 16.783 533.201 0.530
6.499 11.455 11646.480 0.254
6.000 9,114 23.400 1.157
6.465 4,850 1172.142 0 450
6.C00 2.832 4,679 1.731
6.282 0.445 1300.687 0.433
6.000 - 2,832 4,679 1,731
6.055 - 3.380 470.909 0.549
6.000 - 9,114 23.400 1.157
6.005 - 9.160 4881.640 0.305
6.000 -16.783 533.201 0.530
6.000 -16.783 427489.535 0,099
7.500 26.597 523205.875 0.105
7.000 23.075 841.478 0.508
7.500 16.820 62918.110 0.178
7.000 14,000 62.554 0.973
7.492 8.695 %411996.648 0.111
7.000 6.444 7.341 1.662
7.393 2.660 1053.201 0.493
7.000 0.000 3.448 2,007
7.157 - 1.500 1947.103 0.416
7.000 - 6.4bk 7.341 1.662
7.020 - 6.660 161k.970 0.432
7.009 -14,000 62.554 0.973
7.000 -1%4,010 8308.581. 0.287
7.000 -23,075 841,478 0,508
7.000 -23.075 992383.008 0.087
8.500 3%4.389 203797.938 0.141
8.000 30.367 5077 . 147 0.345
8.500 23.191 115954.960 0.162
8.000 19.876 156.869 0.823
8.497 13.590 866869.250 0.098
8.000 10.949 14,942 1.482
8.463 5,885 2928,812 0.407
8.000 3.4 3.745 2,094
8.275 0.535 46hhs59,938 0.113
8.000 - 3,441 3.745 2.094
8.073 - Lk,170 758.318 0.557
8.000 -10.949 1h,942 1.482
8.005 -11.015 1130.930 0.502
8.000 -19.876 156.869 0.823
8.000 -19.879 6703.902 0.322
8.000 -30.367 5077 . 147 0.345
8.000 -30.367 902867.680 0.09k
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Table 6 - (continued)
' 1
v M M (Wa/A)s
9.500 - -- -
9,000 38,660 677.440 0.604
. 9.500 - - -
9,000 26.751 645,618 0.611
~9.50 -- -= --
9.000 16.431 37.872 1.242
9.000 7.640 5.650 1.998
9:600 0.000 2,915 2.357
9.000 - 7.640 5.650 1.998
9:500 -16.413 37.872 1.2k2
~9.00 -16.4 - .-
9,000 -26.751 645.618 0.611
~9,00 -26.8 -- -
2,000 -38.660 677.440 0.604
9,000 ~-38.660 607247.125 0.110
é B: Neumann Problem
ki
. . 1.000 0.500 16,750 0.588
0.814 - 0.194 12,233 0.589
1.000 - 0,500 16.750 0.588
2.000 1.732 120.627 0.472
1.595 0.795 9.843 0.805
2.000 0.000 20,094 0.739
1.955 - 1.552 12,890 0.818
2.000 - 1.737 120.627 0.472
3.090 3.950 1058.871 0.326
A 2.520 2.625 14,021 0.892
4 3.000 0.950 45,070 0.718
X 2.803 - 0.350 6.998 0.111
: 3,000 - 0.950 45,070 0.718
2.990 - 3.890 22.573 0.853
3.000 - 3.950 1058.871 0.326
4,000 7.211 9332.023 0.215
- 3.505 5.430 30.317 0.850
4,000 2.646 178.674 0.578
3.617 1.260 6.567 1.263
" 4,000 0,00V 40.897 0.836
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Table 6 - (continued)

v u Ay (M/M
3.940 - 2.315 6.817 1.300
1,000 - 2.546 178.674 0.578
3.998 - 7.195 56.527 0.771
4,000 - 7.211 9332.023 0.215
5,000 12,494 75184 ,075 0.141
1,500 9.218 85,5k 0.733
5.000 5.363 10L47.489 0.411
4,530 3,680 &.176 1.323
5.000 1.369 72.363 0.800
4. 795 - 0.495 c,281 1.515
5,000 - 1.369 73.363 0.800
.98% - 5.230 10.556 1.296
5.000 - 5.363 1047.489 0.411
5,000 -11.491 176,504 0.642
5.000 -11.49k4 76184.075 0.141
6.000 16.784 617657, 477 0.090
5.500 14,012 284.757 0.595
6.000 9.165 6926.720 0.279
5.507 7.060 15.340 1.236
6.000 3.507 236.801 0.649
5.627 1.692 4.679 1.68)
6.000 0.0C0 62.880 0.904
5.927 - 3.015 L.486 1.739
6.000 - 3.507 236.801 0.649
5.997 - 9.120 26.646 1.120
6.000 - 9,165 6926.720 0.279
6.000 -16.783 637.161 0.507
6.000 -16.784 617657. 477 0.090
7.000 23.076 70189.938 0.168
6.500 19.804 1031.706 0.466
7.000 14,014 46539, 142 0.1
6.501 11.440 €9.93k 0.914
7.000 6.708 1135.994 0.h471
6.540 4,675 5.719 1,714
7.000 1.770 102,166 0.860
6.792 - 0,630 169,150 0.748
7.000 - 1.770 102.166 0.860
6.980 - 6.550 4,261 1.901
7.000 - 6.708 1135.994 0.471
7.000 -14,002 188.385 0.738
7.000 -1k4,014 46539.1u42 0.186
7.000 -23.075 ol12, 17k 0.390
7.000 -23,076 701895.938 0.094
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Table 6 - (continued)

59

1
v M N (Pu/B )W
8.000 30.368 al43368.000 ©.093
7.500 26.597 3927.403 0.357
8.000 19.880 294906, 848 0.125
7.500 16.816 1,848 1.904
8.000 11.036 6352.965 0.3256
7.510 8.625 9,765 1.599
8.000 4,33k 292,966 0.704
7.632 2.095 oly, O7h 0.915
8.000 0.000 85.737 0.957
7.923 - 3.685 6.299 1.830
8.000 - L,334 292,966 0.70k
7.995 -10.965 5.347 1.915
8.000 -11.036 6352.965 0.326
8.000 -19.877 819.559 0.5kl
8.000 -19,880 294906 . 848 0.)25
8.000 -30.368 14267.483 0.267
8.000 -30,368 9k3368.C00 0.093
9,000 38.660 221153.000 0.142
8.500 34.389 11763.660 0.288
9.000 26.752 510399,188 0.115
8.500 23.190 462,985 0.646
9,000 16.438 35518.638 0.223
8.503 13.570 36.122 1.223
9.000 8.00k 1233.913 0.520
8.545 5.630 36.915 1.219
9,000 2,158 131.879 0.909
8.787 - 0.770 2369.904 0.436
9,000 - 2.158 131.879 0.909
8.980 - 7.710 8.552 1.799
9.00C - 8.004 1233.931 0.520
9,000 -16.420 9.861 1.738
9.000 -16.438 36518.688 0.223
9,000 -26.751 86.694 1.009
9,000 -26.752 510399.188 0.115
9,000 -38.660 78706.,980 0,184
9.000 -38.6¢t0 221153.000 0.1h2
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CHAPTER VI

DISCUSSION OF THE FIELDS AND CURRENTS
FOR SOME SPECIAL CASES

This chapter contains several numerical examples of the exact
solution given in Chapter V. First, the exact fields and current for
an infinitesimal dipole source are derived. These are then evaluated
in the vieinity of the tip of the quarter plane. Several source
locations and orientations are considered. The dominant behavior
near the tip of a wide angle sector and a narrow angle sector are
also discussed. The reciprocal case cf a source close to the tip of
the quarter plane is also considered, and severel far field patterns

are given.

Fields and Currents for & Unit Dipole Source

The dyadic Green's functions derived in Chapter V are to be used
in equetion (5.3) in order to determine the vector E field at R due to

a current source at R'. If the source is a unit dipole source at R,
i.e., if

jun J (R") = a 6 (R'-R,) (6.1)

where a is just a unit vector at R,, the E field is simply

100
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( nr 11 ﬁ<Il2 (Ro) -
- Je] | Mg (B) )
: a | Aq2
(6.2a)
s I = »
i: I - I“ql (Ro) ° 8
, + N 1 (R) ( ) r > r°
g a A -
2 al
: E (R) = 4
: HI (R,) - 2
b '_'I =y 2 °
;Kz[qu(n)(q
; a [ Ago
; s (6.2b)
' "-'I — ql Q *8a
* Ny (R) ( Ylrer
A -— 0
] _ ql |
; i The H field is easily determined using Maxwell's equations,
i _ and the properties of the M and W vectors given by equations (4.10) -
(k.23).
: ( iy (R,) - a
- a1~ Mg2 (Re) - 2
, -k Yo | Ngo (R) ( )
q Aq2
3 I - .
N1 (Re) * a
=TT =y (L *7°
+ M- (R) ( ) |r>r (6.32)
ql Aql -0
3 - = J —
H(R) =— 79 xE (R) =¢
wy
Ml (Ro) - a
1 =1 = q2
¢ q g2
3 - ~II ,— -
: S
, + My (R) ( )| r <, (6.3b)
E; s Aql
3 .
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Y, is the admittance of the mediwm,

, Yo = [%;_ . (6.4)

The current on the gquarter plane can be found by evaluating the

tengential H field at the quarter plane. 1In order to do this it is

AT AR S 2 i 18 TN i e 7 S

B3 o 40

necessary to consider the even and odd parts of the H field.
Ecuation (6.3a) is

- - ~
Megyo (Ro) * &

HE=-x¥] |Tep, B )
’ 2L €2
_.I - ~ -t —
M (Rg) * a N. . (R,) * a
~II - 022 ° IT1 ,— e 0
+ W, (R ) + gy, (R (—22 )
ag2 - Regq

o>

.._.I —
. N (Ro)
~II ,— e
f BT (R (—22
%l Aos1

(6.5)

Recalling the notation that was introduced in Chapter IV, the
subscript q is used to simplify the group of subscripts gﬁ. Thus if
it is necessary to identify even and odd functions, the shorthand
notation q can not be vsed and it is necessary to use the more bulky
notation in equation (6.5).

The surface curren: on the quarter plane is

nx [H(r, 0=1, 0<¢<m)-HI(r, 0=n, 1 < ¢ < 2n)] (6.6)

)
|

A
u

>

where n is a unit normal vector and n = y.
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Performing the calculations, it is found that ﬁiie(ﬁ) and ﬁgil(ﬁ)

do not contribute to the current. The actual calculation is very
compiicated beccause of the different unit vector directions on
opposite sides of the quarter plane, and because a point is described
by (r, 8 = 7, ¢) on one siae of the guarter plane and by

(r, & = 7, 21 - ¢) on the other side. The result, however, is
obvious after one realizes that ﬁiiz(ﬁ) and ﬁgil

Lame polynomials. This implies that these vector wave functions are

(R) are composed of

free space solutions of the vector wave equation (no scattering body)
end are therefore continuous at the quarter plane. The contrivution

of the remaining two terms to the surface current is

=1 = - (2)
— Mg, (Ro) * & = v(v+1l} hy® (kr)
F(RY = -2¢ Yo | 2" ° eczz(") ( or >
% Aogo
~ (r hsz)(Kr))' Il + sin? ¢ dieo(d) r .
Popo(d) ¢ + J
KY sin ¢
-l e - -
+ Neﬂ,l(Rc) *a h\()2)(Kr) ¢e21(¢) r
0dyy (1) — - r>r, (6.7)
Ae£1 K sin ¢

For the sake of notationual economy, the eigenvalue v has not been
subscripted. This will occur whenever it is clear that the eigenvalue
to be used corresponds to an identified eigenfunction.

Equation (6.7) was derived from equation (6.3z) and is thus good

for r > r,. Tor r < r,, the surface current is




10k

~1X ) -

Ky ¢C£2

TR) = -2 Yo ] () ¢

L 0°£2(n)(—v(v+l)

A°2?

1 I . 2 R
. (r gv (xr))' |31 + sin ¢ o (8) 7 )

KY sin ¢ ce2

. AP
Neo1(Ro) « & 0% _(m) Jy(xkr) .
S A R () r| rs<x, (6.8)

Mgy sin ¢ Pen1
The variable ¢ in equation (6.7) and (6.8) is restricted such that
0<¢<m

Up to this point, no approximalions have been made. In principle,
equations (6.2), (6.3), (6.7) and (6.8) for E, H, and J can be used
to determine the exact fields and currents anywhere due to a dipole
source with any location and any orientation. Admittedly the equations
are complicated but it is practicable to use them in calculations
where the source point or observation point is no more than one or
two wavelengths from the tip. Moreover, it may be possible to develop

asymptotic expressions starting with these expansions.

Fields and Currents Near the Tip of the Quarter Plane

Consider what happens as kr becomes very small. The E field for
re> r is given by equation (6.2b). The R dependent terms of the E
=I = =1 = . . =1 = ) .
field are ng(R) and Ngl(R). First, consider qu(R). From equation
(4.17)

Ho(®) = Jy (xr) Tgp (6.9)
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For small xr, the Bessel function can be written

1 (kr)Y
oVl p(v+1.5)

(6.10)

Jv (kr)=

where I'(x)} is the Gamma function. The lowest Neumann eigenvalue is

v = 0.814. For this eigenvalue

. . -
Myo(R) = 0.428 (1) O B2 mep (v = 0.81k) (6.11)

Note that the subscript £ has been suppressed. This will occur in all
of the following equations when it is clearly understood which
eigenvalue is being used. The next highest eigenvalue is v = 1. The
two corresponding Lame functions are even, and the vector wave funciions

are

I - mep (v =1, u = 0.5)
Meo(R)= ;;- _f (6.12)
me2 (v =1, u =-0.5)

Next, ﬁél(ﬁ) is examined when kr is small. From equation (4.18)

T - b l) 5 LE_J%E?).Z_ ( x my) (6.13)

For small kr

(r gy (ex))' [ (v+1) ()" (6.14)
Kr 2V (2v+1)T(v+0.5)

The lowest Dirichlet eigenvalue is v = 0.296. The corresponding Lamé

1wnetion is even, and the vector wave function is

-0.70L

ﬁil(ﬁ):: 0.776 (xr) [2e1(v = 0.296)

- (6.15)
+1.266 (r x mey (v = 0.296)) ]
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The next eigenvalue is v = 1. The corresponding Lame function is odd,
and the vector wave function is

e

N, (R) = % [ %y (v=1)+2 (r: mg (v=1))) (6.16)

The dominant term for xr very small is obviously ﬁgl(ﬁ). The

normalization constant associated with this term is (from Table 6)

Aep = 2.940 (6.17)

§ Thus the E field very close to the tip of the quarter plane can be

F written

B(R) = § « (0.264)(Way (Ro) + a)(xr)
[ %, +1.296 (rxmgy) ] xkr<<i (6.18)

where it is understood that the eigenfunctions to be used in the vector
wave functions correspond to the eigenvalue v = 0.296.

Next consider the H fi=ld. Using the small argument approximation

for the Bessel functions, and evaluating the first few terms, it is
seen that the dominant behavior of the H field near the tip is

BR) = ¢ Yo (0.02) HLR,) + )(er) 2%

AR T

[T, *+1.814 (Fxmp) ] wr<<1 (6.19)

The eigenfunctions in this eguation correspond to the eigenvalue

v = 0.814., The normalization constant is

hop = 12.233 (6.20)
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The dominant term in the surface current is the same as for H

and is given by

J(R) = -2 ¢ Y, (o.o31)(§012(§°) . o) (k) ~0-186
- 1 + sin® ¢ . -
=0gp(6) ¢ + 1.228 — 058 T | kr << (6.21)

Equations (6.18), (6.19), and (6.21) give only the sinéular
components of the fields and current near the tip of the quarter
plané. These equations govern the dominant field and current behavior
whenever they do not venish. For certain source locations and
orientations a ° ﬁii and a ° ﬁg; will be zero and it will be necessary
to investigate other terms in the field and current expansions. This
will be done later.

Next, the singular fields are examined at the edges and on the

surface of the quaerter piane. From equation (6.18), the E field, for

a constant valuve of r is

B(R) = A 07 (0) 0(6) »

B |l + sin? 4 Oel(e) ¢él(¢) $

+
lsin2 6 + sin2 ¢

2
B[l + sin© 8 -
+ 0p1(8) gy(4) 6 kr < <1 (6.22)

lsin2 € + sin2 ¢

where A and B are constants. The edges of the quarter plane correspond
to(8=mn, ¢ =0) and (6 = n, ¢ = n). Approaching the edge on the

¢ = 0 sector (see Figure 8), it is seen that the r component goes to
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zero, the 8 component is zero, and the ¢ component goes to infinity.
Similar behavior is found for the edge (2 =2, ¢ = n). Approaching
the edges from the quarter plane itself (8 = 7), it is seen that the

; component is zero, the % component is zero, and the 5 component

goes tc infinity (see Figure 9). This edge behavior is consistent
with the results from half-plane theory. On the guarter plane

itself, the parallel (r, &) components are zero, and the perpendicular

(8) component is finite except at the edge.

From equation (6.19) the H field is

H(R) = € 055(8) ¢oy(0) ¥

D |1 + sin2 ¢

[s:‘m2 6 + sin? ¢'
D |1+ sin? o ' A
+ 0,0(8) ¢5(8) 8
|sin2 6 + sin2 o
Kr < < 1 (6.23)

where C and D are constants. Approaching the (& = 7, ¢ = 0) edge
from the ¢ = 0 sector, it is seen that the r component is zero, the

$ component goes to infinity, and the 8 component is zero. Similar
behavior is found for the other =dge. Approaching the edges from the
quarter plane itself (8 = 7), it is seen that the T component goes to
zero, the & component goes to infinity, and the é component is zero.
This edge behavior for the H field is also consistent w’th half-plane

~

theory. On the quarter plane itself, the parallel components (r, &)




T AT U A

CES

TEVRY

RS

rd T M

T A,

w
v e St < bt e e . AV A it

D) S A R

’
Fig, 8. Unit vectors on the ¢=0 sector
y

%727/ /
L

. Fig. 9. Unit vectors on the 6=n sector

-

109




110
are finite except at the edges, where the ; component is zero, and
the & component is infinite. The perpendicular component (é) is zero.

It was mentioned in Chapters IV and V that the electromagnetic
fields must satisfy edge and tip conditions. These conditions are
necessary for uniqueness, and they do not occur in the case of
scattering bodies with well defined surface normals. A good summary
of this subject can be found in Jones {4,19]). Jones describes the
conditions imposed by several authors and concludes that although
their viewpoints are different, their results are in agreement. TFor
the guarter plane problem, pernaps the simplest way of stating the
condition is to require that no energy be radiated from the tip or

edges. Thus the condition can be reduced to satisfying
Re ]; Ex® +ds=0

on a surface enclosing the tip (or edge) as this surface shrinks to
the tio (or edge). This can be dorne by inspecting the order of the
singularities of the proper field components as the edges and tip
are appruached. The tip and edge conditions sre satisfied by the
solutions given here.

From equetion (6.21), the surface current on the quarter plane

1s

Figures 10, 11, and 12 are sketches of the r and ¢ components of the
surface current, and the total surface current flow near the tip of

the quarter plane.
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All of the fields and currents Jjust described are the dominant
terms whenever they are not zero. In order to determine when these
terms vanish, it is necessary to examine the source terms. The source

term for the E field is

e . 0.384 n$2)oc (kro) .
NglI_(Ro) ca= KIO..296 Sej_(eo) ‘bel(%)ro '
-]

%>

+ (ro hiZ)oq (kzo))"

(3 [Sin2 8o + sin2 ¢o

( Il + sin2 do Oel(eo) d’él(q’o) ;o ¢ g’
+ {1+ 102 0o 04;(84) Se1(d0) Bo * & ) (6.25)

First, consider a source in the r,direction, i.e., a = r,. Then

(2)
. (0.384) n (xro) 0aq1(8,) de1(dg)
FeL(Ro) - & = 0.296 7o’ "e1i7o] Tel %o (6.26)
KT

In general; this term is not zero for any 6, or ¢, except of course

8, = m. Next consider a source in the ¢, direction. Then

I ,— ~ (rohg, o9 {(kre))! |1 + sin ¢, 021(00) ¢é1(¢o)
Nel(RG) *a= -_—
Kre |sin2 te + sin? ¢,
(6.27)
The eigenfunction ¢51(¢y) is of the form
be1(0g) = ] Bom cos 2m ¢,
m=0 .

so that

pEP P

R T
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baq(t0) = - Zl om Boy sin 2m o 3
m:

Thus this term is zero for ¢, = 7/2, 3n/2, which corresponds to the

z = 0 plane. The vector a= $o is perpendicular to this plane. These
results imply that equation (6.18) for the E field close to the tiv of
the quarter plane is not valid for this particular source location and
orientation. Equation (6.27) is also zero for ¢ = 0, m. A source in
the ;o direction at ¢éo = 0, 1 is a source in the plane of the qaarter
plane (y = O plane) but not on the quarter plane itself, and oriented
perpendicular to it. It is not surprising that the current vanisnes
for this case. since this type of source produces no scattered field.
It is also zero for 8¢ = m. Next consider a source in the 50

direction. Then )

(o hohog (kro))' |1+ sin? 6, 01(60) 0q(s0)

KTo Isin2 8o + sin? ¢4

—II,— N
N (Rg) + a=

(6.28)

This term is zero for 6, = 0. Again this corresponds t¢ a source
loceted in the plane of the quarter plane and oriented perpendiculszr
to it; on the otrer hand, equation (6.28) is not zero for a source on
the quarter plane itself.

Since equation (£.18) does not describe the dominant E field when
the source is in the z = O plane and oriented perpendicular to it, it

is necessary to look for the next most dominant term. This term

corresponds to ﬁgl(ﬁ) with v = 1.130, The E field is
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E()=3x(0.011) (Fox(R) + a)(kri™™ [Tep + 2.13 (F x me1)]
Kr < <1 (6.29)
The normalization constant is
Aey = 1Lk.201 (6.30)

Note that this field is not singular at the tip. The edge behavior,

however, is the same as before.

The source term for the dominant ﬁ'fiela and current is

(2
I — ~ B8y (kro)
MiZ(Ro) ca= 0 glh

lsin2 6, + sin2 ¢ )

[ 1+ Sin2 60 982(90) ¢02(¢o) ;Q *

® >

(14 sin? 0o 0p(00) 45o(00) B0 v a1 (6.31)

This term is, of course, zero for a source in the ro direction. For
a source in the ¢, direction,
(2) 1 + sin? 6o 0;2(90) ¢02(¢0)

—IT - . .
MOQ(RO) *a=h g, (kry) (6.32)
sin? B, + sin® d

This term is not zero, in general, for any source location except
¢o = 0, which has already been discussed, and of course for 8, = 7.

For a source in the 6, direction,

=17 = ~_(2)
Mop(Re) * &=~ by gy

|1 + sin? 6o 05p(80) Gg(60) (6.33)

f;inﬁ 0o + sin® &g

{kry)

L
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This term is zero for ¢4 = /2, 31/2. Thus equations (6.19) and (6.21)
do not give the dominant behavior of the H field and current when the
source is in the 2z = 0 plane and in the éo direction. Since the source
term is also zero for a source in the ;o direction, it is zero for any
source in the z = 0 plane and oriented parallel to it. This is
r-~asonable when one considers the symmetrical nature of the source and
the antisymmetrical neture of the current shown in Figure 12. The
dominant current behavior for this type of source corresponds to the

eigenvalue v = 0.296. The current is

__ 2xrY, (0.172) (ﬁg(ﬁo) . é)(xr)0.296 9eq (9) r
J(R) =
sin ¢
Kr < < 1 (6.3k)
The corresponding H field is
HE) = - x Yo (0.260) (Wor(Ro) » 2)xr)®"?P iy
Kr < < 1 (6.35)

These terms are not singular at the origin. The edge behavior of the
H field is the same as before, however, and is consistent with half-
plane theory. The surface cu rent is in the r direction only, and
goes to zero at the tip. Its behavior for kr < < 1 is sketched in
Figure 13, and tae current flow is sketched in Figure 1k,

The dominant fields and currents near the tip of the quarter
plane for the various source locations are summarized on pages 118,

119, =nd 120.

PRI
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Fig. 13. Variation of J,. for kr<<i (From
equation €.3%)
Surface current flow near the tip of the quarter plane
(From equation 6.3h4)
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Summary: Example 1

Source

Fig. 15. Source in the z=0 plane and
perpendicular to that plane

(=g (0.002) (FLE(R,) + a)(kr)®™™ [Tey + 2.13 (F x med)]

v=113 , kr<<1l (6.29)

H(R) = —« Y, (0.02h)(ﬁ2;(§;) o ;)(Kr)—o'186

[ ?02 + 1.8k (;' X Eoe) ] v = 0,81k s Kr < <1 (6.19)

:T.(R) =2 Kk Yq (0.031)(ﬁ:;(§o) . ;)(Kr)-0.186

c 2
~ 1 + sin® ¢ - .
[~¢°2(¢) ¢ +1.228 Ty ¢‘;2(¢) r] (6.21)

v=0.8k% , xkr<c<i

et v
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Summary: Example 2

y

fource sg-g—

Fig. 16. Source in the z=0 plane and
parallel to that plane

R = 5 « (0.260)(FD (o) - a)xr) 0T

[ Toy +1.296 (r xmgy) ] v =10.296, xr < <1
CEE) = - ¥ (0.268) (Fer(Ra) + 2)0er)* P iy
v=0.296 , kr<<l1
L 26¥ (0.272) (FeE(Ro) ¢ a)(kr) 2% oy (4) 1
J(R) =
sin ¢
v = 0.296 Kr < <1

3

119

(6.18)

(6.35)

{6.34)

T T
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b Summary: Example 3

y
?‘ aé Source
k. <
- ;
. 4
- z
.
3 Fig. 17. Source location and orientation
g arbitrary to the extent that it is not
: E: in the z=0 plane
E .
: :' o, - — »~ "0. 0’4
» E(R) = § x (0.264)(For (Ro) + a)(kr) 0"
: { 1;1 +1.296 (r x ;él) ] v=0.296 , xkr < <1 (6.18)
4 “00186

E 4 H(R) = % o (0.024)(Ha(E,) + &)(ex)

-
é i [ 2;2 + 1.8l (rxmy,) 1 v=0.814 ,kr< <1 (6.19)
b ; -O . .L86

3 J(R) = -2 x ¥, (o.o31)(ﬁ§;(§;) + 2){xr)

Il + 8sin® ¢ ' -
b0(4) *

[;o°2(¢) ¢ + 1.228 sin o

(6.21)

v=0,8l4 , kr<<l
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Fields and Currents Near the Tip of Angular Sectors
with k2 = 0.1 and k2 = 0.9 for a Unit Dipole Source

The dominant behavior of the E field in the vicinity of the tip
is determined by the lowest even DNirichlet eigetivalue, and the
dominant behavior of the H field and current is governed by the lawest
odd Neumann eigenvalue. In Chapter III, these eigenvalues were
determined for k% = 0.1 and k° = 0.9.

When the parameter k2 = 0.1, the corner angle cf the plane angular
sector is 0.795m, thus as k€ beccmes smaller the E 7ield behavior
should be similar to that for the half plane. For %2 = 0.1,

)Vel-l

Vep = 0.UOT, and it is evident that (kr , corresponding to

equation (6.18), is approaching (xkr) 0> as the plane angular sector
approaches & half plane. In order to compare this singular part of
the E field with half-plane theory, consider the z = 0 (¢ = 7/2, 3n/2)
plane. In this plane the unit vector ; corresponds to the radial

vector 3 in cvlindrical coordinates. The unit vector $ in the sphero-
conal system is the same as ~; in the cylindrical system, and the
gphero~conal unit vector 5 approximates the cylindrical unit vector ;.
(See Figures 18 and 19.) Only the r=p and 0 components of equation (6.18)
exist in ‘this plane. Thus in the cylindrical coordinate system, the
singuler fields are the p and & components. They vary as (Kp)-llz,
which sgrees with half-plane theory. For a genersl discussion of field
behavior st an edge, see Jones[19].

The dominant currentbehaves like equation (6.21). The eigenvalue
ccrresponding to this equation for k2 = 0.1 is Voo = 0.613. This
eigenvalue is also approaching 0.5 as k2 approaches zero. Thus the r

dependence of the dominant current is also aporoaching (Kr>_1/2.
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Fig. 18, A plane angular sector with a large
corner angle and the unit vectors in the
2=0 plane

<

Fig. 19. A half plane.in a cylindrical
coordinate system and the unit vectors
in the z=0 plane
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A sketch of this current is given in Figure 20. The current is
predominantly parallel to the edge and varying approximately as

)_1/2, which is in agreement witk half-plane theory.

(kp

The above discussion is rather gqualitative and by no means
describes the exact behavior of the fields and current as the plane
angular sector becomes o half plane. The purpose of the discussion
is only to indicate that as k2 -+ 0, the various field and current
components do appear to be approaching the correct half-plane theory,
and that the half-plane problem could bs studied if desired.

The lowest even Dirichlet eigenvalue and the lowest odd Neumann
eigenvalue were also determined for k2 = 0.9. This corresponds to a
plane angular sector with a corner angle of 0.205n. This case will
not be considered in detail but will be used only to indicate the
variation with r of the fields and currents near the tip of a sharp
sector. The eigenvalue ve; = 0.171, so that the dominant E'field,
which varies as (xr)vel'l, is approsaching (Kr)’l. The eigenvalue
Vgo = 0.970, so that the dominant H and J, vhich vary as (kr)’02-1,
are approaching (Kr)o. These are only limiting values, because the
vector wave functions corresponding to these eigenvalues go to zero
for kX° = 1. The reason for this is that the scattering body is
becoming smaller as x2 approaches 1, and for k2 = 1 there is no
scattering body. Thne singular terms do not exist for this case.

The behavior of the dominant fields and currents is tabulated in

Table T for k° = 0.1, 0.5, and 0.9.
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Fig., 20, Surface current flow near the tip of
a plane angular sector with a large corner

angle (From equation 6.21)

Corner Angle 0.2057w 0.5007 0.795n
k@ 0.9 0.5 0.1
Vel 3.171 0.296 0.ko7
S 0.970 0.814 0.613
E (xr)-0-829 (Kr)—0.70h (xr)=0.593
i35 (kr)=0-030  (,p})=0.186 (,.)-0.387

Table T - Behavior of Dominant Terms of ﬁ; ﬁ; and

J for Different Corner Angles

12k
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T Field Near the Tip of the Quarter Plane
for a Plaae Weve Incident

In order to compare the present solution with earlier work, the
illumination of the guerter plane by a plane wave will be treated.
Consider what happens 'as the source is moved far from the tip, i.e.,
as xr, + =, For this case, the large argument approximations can he
used for the Hankel functions. In example 1 on page 118, the

source term for the E fieid is

(2) ' '
v . (ro h (krg)) " 0e3(85) ®gq(d0)
nﬁ(m) . 4o = 1.hay —2 113 o Bl 1k (6.36)

KTg ]1 + sin? 0,

Correct to order 1/kro, the ro devendence is

2) ' Ny
(ro h:(L.B(Kro)) 0565w ik (6.5)

KTo KT

and the E field due to this source can be written

Oey (85) 043 (40 (kr)0+13

|1 + sin? 6,

E(R) = j(0.107)eI0- 5657 gi

[ Eel + 2.13 (; X Eel) ] (‘bo = 1]'/2’ 3-"/2’

v=1.13, xr<<l, kr>>1 (6.28)
where
) e‘JKro
E = (6.39)
br r,

is the incident field at the tip. El also cen be considered as the
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field of a plane wave at the %ip. In particular, consider a plane
wvave propagating in the -§ direction with the E field in the z

direction. The total field in the vicinity of the tip is

E(®) = 3 (0.096) B 305657 («)023 (T + 213 (F x Tey))

v=113, xr<<1l, kr, >>1 {6.4%0)

If the plane wave is propsgating in the -x direction with the sawe

polarization, the E field is

BE) = 5 (0.078) EL J0-5657 ()
v=113, kr<<l, kr,>>1 (6.41)

Next consider example 2. For a plane wave propegating in the -§

direction with x polarization, the total E field in the vicinity of

the tip is
B® = 3(2.065) B e300y T (3 4 1206 (7 x ey
v =029, kr <<1l, kr, >>1 (6.42)

Equetions (6.38)-(6.42) really yield no new informetion concerning
the behavior of the fields very close %o the tip. For the dominant
field terms, the range of the source for any of the three cases
considered on pages 118, 119,and 120 affects only the amplitude and
not the form of the fields. However, several authors have studied the
behavior of the scalar fields near the tip for scalar plane wave

jillumination. Braunbeck(5] considered the form of the eigenfunction
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solution of Leplsce's equation. Using physical reasoning, he

Gocermined that the solution varies es r® (a < 0.5). Radlow(3]

TET Tyt R T Y B
e - s T A

used an integral transform technique to solve the scalar problem. He

interprets his result as being the scatterad E field due to an incident

RSP FX e e
P

.

plane wave with the E field parallel to the quarter plane. He estimates

that the E-field varies roughly as r0:25, Radlow also mentions

a2

another caleulation in which Noble estimates the variation to be r0'3.

LA L

. e - e

The eigenvalue in the present paper which corresponds to these
expcnents is vey = 0.29€. Radlow's treatment of the scalar problem
appeax's to be correct and the results hz obteins are a valusble

contribution to this problem; however his interpretation of his

DAV e D v MO ey

» solution as one component of the electric field is clearly in exror.
. The vector solution given here shows that the scattered field depends

P on +the polarization of the incident plane wave and that it varies

NG

V~l

as r .

Gl et

Far Zone Fields and Currents Due to a Unit Dipole
%7 Source Close to the Tip of the Quarter Pla.c

;§ Next the reciprocal case is studied; i.e., the far zone fields
are determined for the source located close to the tip of the quarter
i plane. Perhaps the simplest way to determine these fields is to start

with equation (6.2a). Let ry be very small and use the small argument

approximation for the Bessel functions with argument xr,. Then let r

G be very large and use the large argument approximation for the Bessel

,2 . functions with argument xr. The procedure is essentially the same as

o | before, except that r and r, are interchanged.
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Equation (6.22) is
' 1
Mg2 (Re) * &
— —JII ,— g2 \He
E(R) =3« ] [ Mg (R) { ——)
a hq2
3 - R
N Vo
IT — nql (Rol a >l )
+ W B (e | s, (6.13)

ql

The source terms are examined for r, very small, and it is seen that

the dominant term is

A Jvlkrg) - o {re Julrry))!
Nel (Rc) 8 = -——K-r—:— el e g 4 o~ [+
(fox me1) * & (6.4k)

with v = 0.296. Using the small argument approximation for the

ﬁ Bessel functions, this becomes

iz'il (Ro) » 2 =~ 1.236 (zro)-o.'zoh ( 2gy a + 1.296
(T x Tgq) + &) (6.15)
The R dependent term is
T (R) = ‘_’Eﬁﬁi’_ Toy + ) o me1) (6.46)
Ki Kr

Using the large argument approximations for the Hankel functions and

neglecting terms of order higher than l/xr, this becomes

-IT ,— —
Neq (R (r x mey) (6.47)
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Now consider hhe source to be located in the z = O plane and in
the —éa direction. This corresponds to example 2 on page 119. In
particular, let the source be located on the line 6, = /2,

¢o = 1/2, (-0, = X). The E field is

- - -Jkr . _

E(®)~ 3 2.157 oJ0-148m (o )=0-TOH S— (7 x hey) (6.48)
In the z = 0 plane this is
— -0. -Jekr -
() ~ s2.308 10107 (rg) 0T €T ol () § (6.49)

This pattern is rormalized to unity at 6 = m and plotted in Figure 21.
C. T. Tai[20] has computed the pattern in this plane for the same
source but with a half plane scattering body. The two patterns are
essentially the same. As a matter of fact, the pattern has the same
general shape for any sector angle provided krg < < 1.

In the x = O plane, the E field is

N - -jkr
B(H) ~ § 1.666 IO+ 1487y )70 TOH %;F
L o 6
- 0g,(¢) ¢ + (0.540) Serle) & (6.50)
'l + sinz ¢

Both components of this pattern are plot:@ed separately in Figures 22
ana 23. These patterns are normalized relative to Tigure 21. Note
that the magnitude of E¢ in Figure 22 is quite smali, in fact the

peak amplitude is more than 20db down from the pesk amplitude of the

field in the z = 0 plane.
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The y = 0 plane is composed of four sectors, ¢ = 1, 6 = 0,

u ¢ = 0,21, and 6 = 7. For ¢ = O, the E field is
: - 30.148n ~0.704 ¢ J¥T
3 E(R)~ - j(2.157) = (krg) " s
E hnr
:
3
; [1+ sin? .
: 11+ sin® 6 oél(e) 9 (6.51)
sin o
For 6 = 0, the E field is
Jxr

D

JO.lth(Kro)-O.'{Oh eh
mr

R(R) ~ - 3(2.15T) e

b e e

v o s .
L R (6.52)

|sin ¢]

e o)

For ¢ = m, the E field is given by ecuation (6.51). The fields for

0, 6 =0, and ¢ = m are all parellel to the y = O plane. For

¢
0

ki

7, the parallel field is of course zero. A field perpendicular

to the quarter plane does exist, however. It is

P M AL, il
N -

— ~0.70! ~3kr de1(¢) @

B(R) ~ 3(1.406) (kr, )"0 TON d0- 1480 2 (6.53)
3 by |sin ¢]
E | This field exists on both sides of the quarter plane, the E vectors

pointing either into or out of the sector on toth sides. The patterns

given by equations {6.51), (6.52), and (6.53) are normalized relative
Y to Figure 21 and plotted in Figure 24. Note that the edges of the
quarter plane appear to have a guiding effect on the field. This

might have some useful applications.
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The dominant far zone current is
- ) o . L -0. ','JKI’
- J(R)~ -23 Y, (1.406) I3 81'(m,) 0.704 e
B bar
teale) (6.5%)

sin ¢

At a constant r, the behavior of J(R) is the same as that shown in
Figure 13. Equetion (6.34) is valid for the current near the tip
due to this source, so Figures 13 and 14 show the behavior of the
current there. Notice that the current in the far zone is decaying
as 1/r and the current near the tip is varying as r0'296; both
currents have the same behavior with respect to ¢.

Next, consider the source location to be on the quarter plane,
still in the z = O plane and still in the -8,(y) direction. This
source corresponds to a vertical dipole on the quarter plane and
close to the tip. The only thing that is changed is that 6o = n
instead of w/2. Equations (6.48)-(6.54) are unchangeé except in
magnitude. Multiply each of these equations ty (2.21) to cbtain the
far fields and current for this source. :igures 21-2h give the
patterns. Actually, these figures give the patterns for any source
located in the z = O plane and parallel to it, and very close to the
tip of the gquarter plane. Of course, the amplitude of the field is
zero for the obvious case of a source on the quarter plane and
parallel to it. The amplitude is also zero for the source on the x

- axis and oriented in the § direction. This is the configuration that

produces no scattered field. In Figures 21 to 2k it is interesting

— e e L - et z”
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to note that the magnitude of E increases as the electric current
dipole approaches the tip. The dominant term of the eleztric field
for these cases is entirely due to currents induced on the quarter
plane. Thus E can be interpreted as a field scattered from the -
quarter plane due to a current dipole in close proximity to the tip.

Now consider the source location shown in example 1 on page 118.
Tet the source be in the z = 0 plane and perpendicular to it. 1In
particuliar consider a source in the ~$° direction and on the ¢4 = n/2,
0o = /2 line (-;o = z). The dominant term for the E field corresponds

to the eigenvalue vey = 1.13. The far zone E field is

- . 7 . —'jKr e -
E(R)~ 3(0.199) 705 (cp,, )0 13 S~ (F x Tey) (6.55)

In the z = 0 plane this is

30.565m (., 10-13 e~I¥T 0ey(0) 2z

b 1'+sin2 6

E(R)~ 3(0.291) e (6.56)

This pattern is noxmalized to unity and plotted in Figure 25. The
pattern in Figure 25 also agrees with Tai's half plene pattern,
which is to be expected, because the general pattern shape is gcod
for all sector angles.

In the x = 0 plane, the far zone field is

0.13 e JKT

H(R) ~ 3(0.243) 3275 (r)
hwr

0.332 ¢ 6
332 be1(¢) (6.57)

ll + gin® $ i

tey() ¢
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Both components of this pattern are normeliized relative to Figure 25
and plotted separately in Figures 26 and 27. The quarter plane
appears to have very little effect on Fijgure 26. The pattern in
Figure 27 is of a cross-polarized field and is down about 10db from
the normally polarized field.

In the y = 0 plane, the far field for the ¢ = O sector is

hnr

Lo 2 ~
._._______ll"’m‘e 0a1(8) 8 (6.58)

E(R)~ 3{0.199) e30.565ﬂ(Kr°)0.13 e I

For the 6 = 0 gsector, it is

e~JkT

bnr

-ﬁ(ﬁ)/\/ 3(0'199) ejo.565n(n,° )0.13

|1 + sin® ¢

|sin ¢|

S ON (6.59)

For ¢ = m, the field is given by equation (6.58). These fields
behave in the same way as in the previous exsmple, i.e., they are all
parallal to the y = 0 plane. For 6 = 7w, there is a perpendicular

field given by

-Jxr 1) 5
30'565“(Krc)0.l3 e el(¢) (6.60)

E(R) ~ ~-3(0.195) e
bar |sin ¢]

Again, this field exists on both sides of the quarter plane, the

E vectors pointing either into or out of the sector on both sides.
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The patterns given by equaticns (6.58), (6.59), and (6.60) are
normalized relative to Figure 25 and plotted in Figure 28. Again
note the guiding effect of the edges of the gquarter plene.

The current is

J(R)~r 2 § Yq (0.195) e'jo'%sﬂ(ncrc)o'l3 Caid
Lar
de1(4) T
.__.e..l_.?.)_f. (6.61)
sin ¢

At a constant r, the behavior of Ekﬁ) is similar to that shown in
Figure 10. Near the tip, equation (6.24) is valid for this source,
so Figures 10, 11, and 12 show the behavior of the current there.
The current in the far zone is decaying as 1/r; the current near the
tip is singular, varying as (Kr)'0’186.

One other source location is considered corresponding to this
case, Let this source be located on the x exis and oriented in the
z direction. Equations(6.55)-(6.61) have the seme form, only their
magnitude being changed. Multiply these equations by (0.819) to
obtain the far fields and currents for this source. Figures 25-28
give the patterns for this source and, in fact, for any source in the
7z = 0 plane and perpendicular to it, and very close tc the tip of the
quarter plane. Again it is mentioned that the amplitude o the field
is zero for the obvious case of the source on the quarter plane. In
Figures 25-28 it is interesting to note that the magnitude of E

decreases as the electric current dipole approaches the tip. The

dominant term of the electric field for these cases again is entirely
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_ §

due to currents induced on the quarter plane, and E can be interpreted ;
i

as a scattered field for these cases too.




CHAPTER VII

CONCLUDING REMARKS

In this report & rigorous, general solution for the diffraction of
an electromagnetic wave by a perfectly-conducting plane angular sector
is derived in the form of & dyadic Green's function. Thus, for exsmple,
the excitation of the plarne angular sector by neighboring antennas or by
slots in the sector can be determined. This pwoblem has not béen solved
previously and although formel solutions to the corresponding scalar
problem exist, no numerical results have been presented.

The dyadic Green's function is expressed in terms of a complete
set of vector wave functions of the spherc-conal coordinate system. The
vector wave functions contain Lame functions, which have been studied
numerica’ly in the case of the quarter plane; the results are presented
in tables of the Lame functions and their associated eigenvalues.

Except for the Lame' polynomials, the Lam€ functions and bheir eigen-
values have not been tabulated previously.

Numerical results for the behavior of the fields and currents near
the tip of the quarter plane are obtained and compared with estimates
and conjectures made by other authors.

The patterns of electric current dipoles very close to the tip are
presented. In the perpendicuvlar plane of symmetry, the pattern is the
same as that of the half plane similarly excited. The patterns in the
vicinity of the edges of the quaerter plane indicate that a substantial
smount of energy is guided away from the source along these edges. In
general, a dipole very close to the quarter plane tip excites a strong

surface current flow along the edges and near the tip; consequently,

1hk
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the patier:i of the electric current dipole is severely altered by the

presence of the quarter plane.

The examples that have bean given are-actually quite simple. They
are restricted such that either the field pvint or the source point is
very close to the tip of the quarter plane; in fact, so close that only
the first or second term in the expansion is used. From the tables in
Chapter III it is s=en that approximately 200 terms of the vector wave
function expsnsion have been computed. Using these results it should
be possible to calculate the fields of sources up to one wavelength
from the tip with good accuracy. At this distance it may be possible
to determine the diffraction coefficient approximately and thereby
extend the solution by means of the geometrical theory of diffraction
so that the fields of sources remote from the £ip can be calculated.

All of this, however, must await fubure work.




APPENDIX A
. THE SELF-ADJOINT AND POSITIVE DEFINITE
3 PROPERTY OF THE TWO-DIMENSIONAL
s STURM-LIOUVILLE OPERATOR
3
. The differential equation of interest can be written
: Ly-Apy=0 (A1)
vhere the Sturm-Liouville operator is
?_T
4 - g ' 3
3 L= L . 3 1-x®cste ) (A2)
s l - kl cos ¢ 36 86
‘B 1S
;
3 1 9 3
g - —-(Il-k'2c052¢ —a-)
2 [1 - k2 cos? 6 3¢ ¢
% : and the weight function is
=
% k2 sin® 6 + k'2 sin2 ¢ (A3)
J p -
4 1 ~%k2 cos2 8 |[1-x'2 cos? ¢
L
Let y be an eigenfunction
E y = 0(8) ¢(¢) (Al)
a corresponding to an eigenvalue
3 A = v{vil) (45)
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Equation (Al) is the same as equation (3.5). The weight function is
the same p defined by equation (5.29).
The self-adjoint property is defined by

<w,Ly>-<y,Lw>=0 (A6)

where < > denotes a scalar product, and y and w are eigenfunctions.

T % 3
<w,Ly>=-[ [ |- Z L1k esre X
¥ -1 0 26 1]
ll—k'2c032¢
3
+ hd 2 ([1- k2 cos? ¢ %)]de dé (A7)
|1 - k2 cos2 o 29 ¢

Performing the differentetion and rearranging the integrals, this can

be written
m T 2
<w,Ly>=-[ = f0|'{l—k2cos2Cw-?—-32£
- Il - k2 cos® ) 89
k2 cos 6 sin 8 Ay m 1
+ Vg | 48 do - fo
|1 - k2 cos2 8 [1 - k2 cos? o
n 5 5 3%y  k'2 cos ¢ sin ¢ ay_l
[ 11 -x2 cos? ¢ w—5+ Vs | a8 (a8)
- ¢ 1 - k'2 cos? ¢ _l

Integrating the first term of the first 8 integral and the first term

of the second ¢ integral by parts, this becomes




2
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!
" =
m 0
1 y
‘ <W,Ly>=-~ f [Il - k% cos? 6 w—
‘ -n ll - k'2 cos? ¢ 30 16=0

%
ow,,9 Ul
~f 11K ces? 0 (GD(Y) a0 | ap - [ - -
|l ~ k€ cos© &

¢=

T T ° v
- f |1 - k'2 cos? ¢ (22)(.£) de | ae
¢=—1|' -n 9 ¢ 9 ¢

-
' 9
[ll -k'2 cos? ¢ w—

¢

(49)

For both the Dirichlet and the Neumann problems, there are four
possible combinations of w and y. Either they are both even, both
odd, w even and y odd, or w odd and y even. For all of these
combinations for both problems, the endpoint contributions are zero,
or the entire integral is zero. In any case, < w, L ¥y > can be

written

Wy Ly>~= ) \—
=T 011 - k'2 cos? ¢ 20 29

ll - k'2 cos? ¢ . .9
(3-}) (% 3o ao (A10)

+

il - k2 cos? ©
It is easily seen from the symmetrical nature of the eguation with
respect to w and y, that it is also equel to < y, L w >, and therefore

<w,Ly>=<y,Lw> (A11)

and L is a self-adjoint operator.
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In order to determine the positive-definite property of [,

consider equation (Al). Scalar multiplication by y yields

<y Ly>
.__L_-...__z)‘ (A12)

<Y, pPY?>

vhere y ig the eigenfunction corresponding to the ei_anvalue A.

T T 42 (k2 gin2 8 + k'S sin® ¢)

<¥sey>= ] J, ' d8 ¢ (A13)
Il - k2 cos? 6 Il - k'@ cos? &
L 1 - %2 cos? 8
<y,Ly>= | [ E (%%—2
-t 0 |l - k'2 cos? ¢
1 - k'2 cos?
+| ¢ (%2 a9 d¢ (ALk)
Il - k2 cos2 8
As a point of interest note that
<y, Ly>=A (A15)

where A is the normalization constant employed in the dyadic Green's
function.
Inspection of equations (Al3) and (Alk) shows that the integrands

are always positive and consequently

<y, L
ARLER AU (A16)
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Thus the operator L is positive definite and A is always greater than

zero. Recall that A = v(v+l) so that equation (A16) implies that

v >0 (A1T)

or
v < =1

Note that equation (Al) is symmetric around v =-1/2, that is, the
differential equation is the same if v is replaced by ~(vi.). In
other words, for v =-0.4 or -0.6, or for v=0 or -1, or for v = a
or ~(a + 1), the differential equation is the same, and consequently
the solutions ure the same. Thus, the eigenvalues, v, need to be
considered only for v > -1/2, or for v < -1/2. For convenience,

v 3.-1/2 is chosen. As a result of this choice and equation (Al7),

only positive valueg of v occur in this analysis.

“




. APPENDIX B

DETERMINATION OF THE EIGENVALUES

It is stated in Chepter III that the eigenvalues are determined
by simultaneously solving two continued fraction equations. The
purpose of this appendix is to explain how this is accomplished.

Consider the even Dirichlet problem. 1In order to have solutions
of equations (3.21), it is necessary that the eigenvalues satisfy
equation (3.26). This equation is an infinite continued fraction
containing two vnknowns, v and h. For a derivation of this equation,
the reader is referred to Ince's paper{10]. The difficulty here is
that the recurrence relations have no starting point. The coefficient
subscripts approach toth plus and minus infinity. Ince has managed to
determine a differential equation which must have the same types of
solutions as the ones used here., but with solutions that can be
written as series starting with Ap and going towerd A,. In this

wsy, the recurrence relations can be written as a matrix equation and

a tractable determinant can be identified. Disgonalization of this

|

l determinant leads to the continued fraction equation (3.26) which is

’

written here as equation (Bl). An eigenvalue equation will be derived

in detail later to illustrate this proceduve.
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C1+ 8 (2v-1) (2043) ¥8/9

4 1+ k2 - Yn/9

36 {2v-5) (2v+T) ¥2/1225
1+ %° - hn/ho

16 (2v-3) (2v+5) k2/225
+ 1+ %2 - hn/2s +

42 (2v-2r+1) (2v+or+l) k°/(hr2-1)°

5 kh
+ KR - ————
+ . . 3 ) . . + 1 k (2”1)2 + * o
(B1)
and y is given by
p=h - vivel) k° (82)

The conventional notation for a continued fraction expesasion is used
here, i.e., the term following the lowered plus is added to the
denominator of the preceding term. The dummy index r is simply an

int:ger. The continued fraction terminates for v equal to half

integers. For v = 1/2, h is constant. For v = 3/2, the equation is a

5/2, it is a third-

second-order polynomial with two roots; for v
order polynomial with three rocts; etc. Actually, there are an infinite
nurber of roots for each value of v. For example, for v = 1/2, the
equation can also be satisfied ty equating the entire denominator of
the second term to zero; for v = 3/2, the denominator of the third

term is zero; etc.

For v = 1/2; h = 0.375, and y = 0. This gives one point on a

plot of y versus v. For v = 3/2, the lowest root is h = 1.009 and

p = 0.866. If values of p can be determined for v between 1/2 and 3/2,
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it will be possible to plot a curve of u versus v for the lowest root
. of equation (Bl). This is done in the following manner. For v = 0.6,

a value of h between h = 0.375 end h = 1.009 is assumed. The first

B AN LD s i

AT ERvait
o e v . L A i RGN M NI P o

T

100 terms of the continued fraction are evaluated for this (v, h) pair.

3

3
:1
v
il

If the difference between the left hand side and right hand side of the

i‘i equation is greater then 10'2, the value of h is increased or decreased
by 10™2 and the continued fraction is evalusted again. This is repeated
until either the difference changes signs or the magnitude of the
; difference is less than 1072. When this occurs, h is increased or

decreased by 10’3; The evaluation is continued until the difference

M o ot

changes signs or the magnitude of the difference is less than 10-3.

When this occurs, h is incremented by 10"h. This time, when the
L

12 883 2 e aenacy

difference changes signs or its magnitude is less than 10~ ', the last

value of h is assumed to be correct. The value of y is computed and

S S 3 o

another point is added to the plot of y versus y. The value of y is
j then increased to 0.7 and the process is repeated again. By incre-

nenting v in increments of 0.1 between v=0 and v=9 and finding u for

T e il S ravcs

each incrementation, a plot of “é versus v is obtained. The super-
seript 1 on p is used to indicate the lowest rooct, and the subscript 6
indicates that it is & root of the 6 equation. Table 8 gives the
values of uy for v = 0 to 9, k% = 1/2, and Figure 29 shows the curve.
Curve ug is obtained by starting with the seccnd root at v = 3/2.

. This curve is computed in the same way as curve u%. Note that the

second root of equation (Bl) for v = 1/2, which can be obtained by

T Y R P TR T T e T TS

equating the denominator of the second term of equation (Bl) to zero,
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can also be obtained by continuing ug back from v = 3/2 to v = 1/2.
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This is mentioned only to indicate that all of the u's which are roots
for each value of v can be obtained by using this method. It is seen
later that it is not necessary to determine all of the roots for each
value of v.

To be certain that u% is the curve of the second root and not the
third or fourth, it is necessary to investigate the area between curves

1 ana u2. The same procedure is used to find h for a fixed value

9 ]
of v. It is found that there are no values 